scholarly journals Response of the Nevzorov hot wire probe in clouds dominated by droplet conditions in the drizzle size range

2009 ◽  
Vol 2 (2) ◽  
pp. 779-788 ◽  
Author(s):  
A. Schwarzenboeck ◽  
G. Mioche ◽  
A. Armetta ◽  
A. Herber ◽  
J.-F. Gayet

Abstract. During the airborne research mission ASTAR 2004 (Arctic Study of Tropospheric Aerosols, Clouds and Radiation) performed over the island of Svalbard in the Arctic a constant-temperature hot-wire Nevzorov Probe designed for aircraft measurements, has been used onboard the aircraft POLAR 2. The Nevzorov probe measured liquid water (LWC) and total condensed water content (TWC) in supercooled liquid and partly mixed phase clouds, respectively. As for other hotwire probes the calculation of LWC and/or TWC (and thus the ice water content IWC) has to take into account the collection efficiencies of the two separate sensors for LWC and TWC which both react differently with respect to cloud phase and what is even more difficult to quantify with respect to the size of ice and liquid cloud particles. The study demonstrates that during pure liquid cloud sequences the ASTAR data set of the Nevzorov probe allowed to improve the quantification of the collection efficiency, particularly of the LWC probe part with respect to water. The improved quantification of liquid water content should lead to improved retrievals of IWC content. Simultaneous retrievals of LWC and IWC are correlated with the asymmetry factor derived from the Polar Nephelometer instrument.

2009 ◽  
Vol 2 (3) ◽  
pp. 1293-1320
Author(s):  
A. Schwarzenboeck ◽  
G. Mioche ◽  
A. Armetta ◽  
A. Herber ◽  
J.-F. Gayet

Abstract. During the airborne research mission ASTAR 2004 (Arctic Study of Tropospheric Aerosols, Clouds and Radiation) performed over the island of Svalbard in the Arctic a constant-temperature hot-wire Nevzorov Probe designed for aircraft measurements, has been used onboard the aircraft POLAR 2. The Nevzorov probe measured liquid water (LWC) and total condensed water content (TWC) in supercooled liquid and partly mixed phase clouds, respectively. As for other hotwire probes the calculation of LWC and/or TWC (and thus the ice water content IWC) has to take into account the collection efficiencies of the two separate sensors for LWC and TWC which both react differently with respect to cloud phase and what is even more difficult to quantify with respect to the size of ice and liquid cloud particles. The study demonstrates that during pure liquid cloud sequences the ASTAR data set of the Nevzorov probe allowed to improve the quantification of the collection efficiency, particularly of the LWC probe part with respect to water. The improved quantification of liquid water content should lead to improved retrievals of IWC content. Simultaneous retrievals of LWC and IWC are correlated with the asymmetry factor derived from the Polar Nephelometer instrument.


2020 ◽  
Author(s):  
Konstantinos Doulgeris ◽  
David Brus

<p>Clouds and their interaction with aerosols are considered one of the major factors that are connected with uncertainties in predictions of climate change and are highly associated with earth radiative balance. Semi long term in-situ measurements of Arctic low-level clouds have been conducted during last 10 year (2009 - 2019) autumns at Sammaltunturi station (67◦58´N, 24◦07´E, and 560 m a.s.l.), the part of Pallas Atmosphere - Ecosystem Supersite and Global Atmosphere Watch (GAW) programme. During these years a unique data set of continuous and detailed ground-based cloud observations over the sub-Arctic area was obtained. The in-situ cloud measurements were made using two cloud probes that were installed on the roof of the station: the Cloud, Aerosol and Precipitation Spectrometer probe (CAPS) and the Forward Scattering Spectrometer Probe<strong> (</strong>FSSP<strong>)</strong>, both made by droplet measurement technologies (DMT, Longmont, CO, USA). CAPS in­cludes three instruments: the Cloud Imaging Probe (CIP, 12.5 μm-1.55 mm), the Cloud and Aerosol Spectrometer (CAS-DPOL, 0.51-50 μm) with depolarization feature and the Hotwire Liquid Water Content Sensor (Hotwire LWC, 0 - 3 g/m<sup>3</sup>). Vaisala FD12P weather sensor was used to measure all the meteorological data. The essential cloud microphysical parameters we investigated during this work were the size distributions, the total number concentrations, the effective radius of cloud droplets and the cloud liquid water content. The year to year comparison and correlations among semi long term in situ cloud measurements and meteorology are presented.</p>


2014 ◽  
Vol 71 (4) ◽  
pp. 1508-1520 ◽  
Author(s):  
Roland List

Abstract An all-encompassing new theory of heat and mass transfer (HMT) and growth equations have been developed for freely falling spherical hailstones with diameters of 0.5–8 cm. The initial six variables are diameter, liquid water content, air and hailstone surface temperatures, net collection efficiency, and ice fraction of spongy deposit. They are replaced by three or four new ones, depending on the three growth categories. Two new variables are products of “old” ones: (i) the square root of the Reynolds number Re and the liquid water content and (ii) net collection efficiency and ice fraction of the spongy deposit. Only the products matter, not the individual parts. [The two variables in (ii) are as important as the two in (i).] Two old variables remain: air and surface temperatures. The HMT can be further compacted for hailstorms with specified pressure–air temperature–height profiles. Further, Re for free-fall reveals unexpected complexities—issues important to solve HMT problems. The “new hailstone physics” is based on 55 years of in-house studies of all aspects of hailstone growth, followed by 5 years of shaping these puzzle pieces and assembling them into a coherent picture. This was only possible by recognizing the free-fall mode: a special gyration that allows hailstones to grow with a radial symmetry and, thus, homogeneous surface temperature. Part II will display the surprising solutions to growth and HMT and firmly link the hailstones to mostly spongy growth with shedding that favors a hail-coupled rain mechanism.


Author(s):  
Tim Carlsen ◽  
Morten Køltzow ◽  
Trude Storelvmo

Abstract In-cloud icing is a major hazard for aviation traffic and forecasting of these events is an important task for weather agencies worldwide. A common tool utilised by aviation forecasters is an icing intensity index based on supercooled liquid water from numerical weather prediction models. We seek to validate the modified microphysics scheme, ICE-T, in the HARMONIE-AROME numerical weather prediction model with respect to aircraft icing. Icing intensities and supercooled liquid water derived from two 3-month winter season simulations with the original microphysics code, CTRL, and ICE-T are compared with pilot reports of icing and satellite retrieved values of liquid and ice water content from CloudSat-CALIPSO and liquid water path from AMSR-2. The results show increased supercooled liquid water and higher icing indices in ICE-T. Several different thresholds and sizes of neighbourhood areas for icing forecasts were tested out, and ICE-T captures more of the reported icing events for all thresholds and nearly all neighbourhood areas. With a higher frequency of forecasted icing, a higher false-alarm ratio cannot be ruled out, but is not possible to quantify due to the lack of no-icing observations. The increased liquid water content in ICE-T shows a better match with the retrieved satellite observations, yet the values are still greatly underestimated at lower levels. Future studies should investigate this issue further, as liquid water content also has implications for downstream processes such as the cloud radiative effect, latent heat release, and precipitation.


2007 ◽  
Vol 24 (6) ◽  
pp. 980-993 ◽  
Author(s):  
Holger Siebert ◽  
Katrin Lehmann ◽  
Raymond A. Shaw

The use of a hot-wire anemometer for high-resolution turbulence measurements in a two-phase flow (e.g., atmospheric clouds) is discussed. Experiments in a small wind tunnel (diameter of 0.2 and 2 m in length) with a mean flow velocity in the range between 5 and 16 m s−1 are performed. In the wind tunnel a spray with a liquid water content of 0.5 and 2.5 g m−3 is generated. After applying a simple despiking algorithm, power spectral analysis shows the same results as spectra observed without spray under similar flow conditions. The flattening of the spectrum at higher frequencies due to impacting droplets could be reduced significantly. The time of the signal response of the hot wire to impacting droplets is theoretically estimated and compared with observations. Estimating the fraction of time during which the velocity signal is influenced by droplet spikes, it turns out that the product of liquid water content and mean flow velocity should be minimized. This implies that for turbulence measurements in atmospheric clouds, a slowly flying platform such as a balloon or helicopter is the appropriate instrumental carrier. Examples of hot-wire anemometer measurements with the helicopter-borne Airborne Cloud Turbulence Observation System (ACTOS) are presented.


2011 ◽  
Vol 5 (4) ◽  
pp. 2197-2252 ◽  
Author(s):  
I. Gouttevin ◽  
G. Krinner ◽  
P. Ciais ◽  
J. Polcher ◽  
C. Legout

Abstract. Soil freezing is a major feature of boreal regions with substantial impact on climate. The present paper describes the implementation of the thermal and hydrological effects of soil freezing in the land surface model ORCHIDEE, which includes a physical description of continental hydrology. The new soil freezing scheme is evaluated against analytical solutions and in-situ observations at a variety of scales in order to test its numerical robustness, explore its sensitivity to parameterization choices and confront its performances to field measurements at typical application scales. It is shown that the appropriate vertical discretization to represent the thermal freezing dynamics is centimetric, and the appropriate freezing window is 1 to 2 °C wide. Furthermore, linear and thermodynamical parameterizations of the liquid water content lead to similar results in terms of water redistribution within the soil as a consequence of freezing. The new soil freezing scheme considerably improves the representation of runoff and river discharge in regions underlain by permafrost and subject to seasonal freezing. A thermodynamical parameterization of the liquid water content appears more appropriate for an integrated description of the hydrological processes at the scale of the vast Siberian basins. The use of a subgrid variability approach and the representation of wetlands could help capturing the features of the Arctic hydrological regime with more accuracy. The modelling of the soil thermal regime is generally improved by the representation of soil freezing processes. In particular, the dynamics of the active layer is captured with an increased accuracy by the soil freezing module, which is of crucial importance in the prospect of simulations involving the response of frozen carbon stocks to future warming. A realistic simulation of the snow cover and its thermal properties, as well as the representation of an organic horizon with specific thermal characteristics, are confirmed to be a pre-requisite for an accurate modelling of the soil thermal dynamics in the Arctic.


2021 ◽  
Author(s):  
Fritz Waitz ◽  
Martin Schnaiter ◽  
Thomas Leisner ◽  
Emma Järvinen

Abstract. Mixed-phase clouds consist of both supercooled liquid water droplets and solid ice crystals. Despite having a significant impact on Earth‘s climate, mixed-phase clouds are poorly understood and not well represented in climate prediction models. One piece of the puzzle is understanding and parameterizing riming of mixed-phase cloud ice crystals, which is one of the main growth mechanisms of ice crystals via the accretion of small, supercooled droplets. Especially the extent of riming on ice crystals smaller than 500 μm is often overlooked in studies – mainly because observations are scarce. Here, we investigated riming in mixed-phase clouds during three airborne campaigns in the Arctic, the Southern Ocean and US east coast. Riming was observed from stereo-microscopic cloud particle images recorded with the Particle Habit Imaging and Polar Scattering (PHIPS) probe. We show that riming is most prevalent at temperatures around −7 °C, where, on average, 43 % of the investigated particles in a size range from 100 ≤ D ≤ 700 μm showed evidence of riming. We discuss the occurrence and properties of rimed ice particles and show correlation of the occurrence and the amount of riming with ambient meteorological parameters. We show that riming fraction increases with ice particle size (< 20 % for D ≤ 200 μm, 35–40 % for D ≥ 400 μm) and liquid water content (25 % for LWC ≤ 0.05 g m−3, up to 60 % for LWC = 0.5 g m−3). We investigate the ageing of rimed particles and the difference between "normal" and "epitaxial" riming based on a case study.


Sign in / Sign up

Export Citation Format

Share Document