scholarly journals Vicarious calibration of S-NPP VIIRS reflective solar M-bands against MODIS Aqua over dark water scenes

Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen ◽  
R. E. Holz ◽  
J. Lee ◽  
...  

Abstract. The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) when similar algorithms are applied to the different sensors. This study presents a vicarious calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to VIIRS between approximately +2 % and −7 % (dependent on band) are needed to bring the two into alignment, and indications of relative trending of up to ~ 0.45 % per year in some bands. The derived vicarious gains are also applied in an AOD retrieval, and are shown to decrease the bias and total error in AOD across the midvisible spectral region compared to the standard VIIRS NASA calibration. The resulting bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multisensor data continuity.

2017 ◽  
Vol 10 (4) ◽  
pp. 1425-1444 ◽  
Author(s):  
Andrew M. Sayer ◽  
N. Christina Hsu ◽  
Corey Bettenhausen ◽  
Robert E. Holz ◽  
Jaehwa Lee ◽  
...  

Abstract. The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and −7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to  ∼  0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.


2020 ◽  
Vol 12 (22) ◽  
pp. 3781
Author(s):  
George Riggs ◽  
Dorothy Hall

An Earth Observing System global snow cover extent data products record at moderate spatial resolution (375–500 m) began in February 2000 with the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument onboard the Terra satellite. The record continued with the Aqua MODIS in July 2002, the Suomi-National Polar Platform (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) in January 2012 and continues with the Joint Polar Satellite System-1 (JPSS-1) VIIRS, launched in November of 2017. The objective of this work is to develop a snow cover extent Earth Science Data Record (ESDR) using different satellites, sensors and algorithms. There are many issues to understand when data from different algorithms and sensors are used over a decade-scale time period to create a continuous dataset. Issues may also arise with sensor degradation and even differences in sensor band locations. In this paper we describe development of an ESDR derived from existing MODIS and VIIRS data products and demonstrate continuity among the products. The MODIS and VIIRS snow cover detection algorithms produce very similar daily snow cover maps, with 90–97% agreement in snow cover extent (SCE) in different landscapes. Differences in SCE between products ranged from 2–15% and are attributable to convolved factors of viewing geometry, pixel spread across a scan and time of observation. Compared at a common grid size of 1 km, there is a mean of 95% agreement in SCE and a difference range of 1–10% between the MODIS and VIIRS SCE maps. Mapping sensor observations to a coarser resolution grid reduces the effect of the factors convolved in the 500 m tile to tile comparisons. We conclude that the MODIS and VIIRS SCE data products are reliable constituents of a moderate-resolution ESDR.


2017 ◽  
Author(s):  
Myungje Choi ◽  
Jhoon Kim ◽  
Jaehwa Lee ◽  
Mijin Kim ◽  
Young-je Park ◽  
...  

Abstract. The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface conditions. Therefore, the improved GOCI AOD (τG) is similar with those of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER algorithm. The τG shows reduced median bias and increased ratio within 0.15τA+0.05 range (i.e. absolute expected error range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD (τA) from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows similar results. The bias of error (τG-τA) is within −0.1 and 0.1 range as a function of AERONET AOD and AE, scattering angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and prognostic expected error (DEE and PEE, respectively) of τG are estimated. The estimated multiple PEE of GOCI V2 AOD is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE compared to over China and Japan.


2021 ◽  
Vol 13 (9) ◽  
pp. 1627
Author(s):  
Chermelle B. Engel ◽  
Simon D. Jones ◽  
Karin J. Reinke

This paper introduces an enhanced version of the Biogeographical Region and Individual Geostationary HHMMSS Threshold (BRIGHT) algorithm. The algorithm runs in real-time and operates over 24 h to include both daytime and night-time detections. The algorithm was executed and tested on 12 months of Himawari-8 data from 1 April 2019 to 31 March 2020, for every valid 10-min observation. The resulting hotspots were compared to those from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). The modified BRIGHT hotspots matched with fire detections in VIIRS 96% and MODIS 95% of the time. The number of VIIRS and MODIS hotspots with matches in the coincident modified BRIGHT dataset was lower (at 33% and 46%, respectively). This paper demonstrates a clear link between the number of VIIRS and MODIS hotspots with matches and the minimum fire radiative power considered.


2015 ◽  
Vol 8 (10) ◽  
pp. 4083-4110 ◽  
Author(s):  
R. C. Levy ◽  
L. A. Munchak ◽  
S. Mattoo ◽  
F. Patadia ◽  
L. A. Remer ◽  
...  

Abstract. To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March–April–May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ~ 0.025), while reducing the differences between AE. We characterize algorithm retrievability through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.


2014 ◽  
Vol 14 (5) ◽  
pp. 2479-2496 ◽  
Author(s):  
D. Rosenfeld ◽  
G. Liu ◽  
X. Yu ◽  
Y. Zhu ◽  
J. Dai ◽  
...  

Abstract. VIIRS (Visible Infrared Imaging Radiometer Suite), onboard the Suomi NPP (National Polar-orbiting Partnership) satellite, has an improved resolution of 750 m with respect to the 1000 m of the Moderate Resolution Imaging Spectroradiometer for the channels that allow retrieving cloud microphysical parameters such as cloud drop effective radius (re). VIIRS also has an imager with five channels of double resolution of 375 m, which was not designed for retrieving cloud products. A methodology for a high-resolution retrieval of re and microphysical presentation of the cloud field based on the VIIRS imager was developed and evaluated with respect to MODIS in this study. The tripled microphysical resolution with respect to MODIS allows obtaining new insights for cloud–aerosol interactions, especially at the smallest cloud scales, because the VIIRS imager can resolve the small convective elements that are sub-pixel for MODIS cloud products. Examples are given for new insights into ship tracks in marine stratocumulus, pollution tracks from point and diffused sources in stratocumulus and cumulus clouds over land, deep tropical convection in pristine air mass over ocean and land, tropical clouds that develop in smoke from forest fires and in heavy pollution haze over densely populated regions in southeastern Asia, and for pyro-cumulonimbus clouds. It is found that the VIIRS imager provides more robust physical interpretation and refined information for cloud and aerosol microphysics as compared to MODIS, especially in the initial stage of cloud formation. VIIRS is found to identify significantly more fully cloudy pixels when small boundary layer convective elements are present. This, in turn, allows for a better quantification of cloud–aerosol interactions and impacts on precipitation-forming processes.


2021 ◽  
Author(s):  
Guoqing (Gary) Lin ◽  
Robert Wolfe ◽  
Bin Tan ◽  
Jaime Nickeson

<p>We have developed a set of geometric standards for assessing earth observing data products derived from space-borne remote sensors.  We have worked with the European Space Agency (ESA) Earthnet Data Assessment Pilot (EDAP) project to provide a set of guidelines to assess geometric performance in data products from commercial electronic-optical remote sensors aboard satellites such as those from Planet Labs. The guidelines, or the standards, are based on performance from a few NASA procured sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors and the Advanced Baseline Imager (ABI) sensors. The standards include sensor spatial response, absolute positional accuracy, and band-to-band co-registration. They are tiered in “basic”, “intermediate” and “goal” criteria. These are important geometric factors affecting scientific use of remote sensing data products. We also discuss possible approaches achieving the highest goal in geometric performance standards.</p>


2020 ◽  
Vol 13 (3) ◽  
pp. 1387-1412
Author(s):  
Jonas Witthuhn ◽  
Anja Hünerbein ◽  
Hartwig Deneke

Abstract. Reliable reference measurements over the ocean are essential for the evaluation and improvement of satellite- and model-based aerosol datasets. Within the framework of the Maritime Aerosol Network, shipborne reference datasets have been collected over the Atlantic Ocean since 2004 with Microtops Sun photometers. These were recently complemented by measurements with the multi-spectral GUVis-3511 shadowband radiometer during five cruises with the research vessel Polarstern. The aerosol optical depth (AOD) uncertainty estimate of both shipborne instruments of ±0.02 can be confirmed if the GUVis instrument is cross calibrated to the Microtops instrument to account for differences in calibration, and if an empirical correction to account for the broad shadowband as well as the effects of forward scattering is introduced. Based on these two datasets, a comprehensive evaluation of aerosol products from the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on NASA's Earth Observing System satellites, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat satellite, and the Copernicus Atmosphere Monitoring Service reanalysis (CAMS RA) is presented. For this purpose, focus is given to the accuracy of the AOD at 630 nm in combination with the Ångström exponent (AE), discussed in the context of the ambient aerosol type. In general, the evaluation of MODIS AOD from the official level-2 aerosol products of C6.1 against the Microtops AOD product confirms that 76 % of data points fall into the expected error limits given by previous validation studies. The SEVIRI-based AOD product exhibits a 25 % larger scatter than the MODIS AOD products at the instrument's native spectral channels. Further, the comparison of CAMS RA and MODIS AOD versus the shipborne reference shows similar performance for both datasets, with some differences arising from the assimilation and model assumptions. When considering aerosol conditions, an overestimation of AE is found for scenes dominated by desert dust for MODIS and SEVIRI products versus the shipborne reference dataset. As the composition of the mixture of aerosol in satellite products is constrained by model assumptions, this highlights the importance of considering the aerosol type in evaluation studies for identifying problematic aspects.


Climate ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 57 ◽  
Author(s):  
Shubhechchha Thapa ◽  
Parveen K. Chhetri ◽  
Andrew G. Klein

The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP (National Polar-Orbiting Partnership) satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS (Moderate Resolution Imaging Spectroradiometer). Although it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage, quantitative comparisons between their snow products are currently limited. Therefore, this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (Environmental Data Records) (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI (Normalized Difference Snow Index) Snow Cover product at a snow cover fraction of 30% generated binary snow maps are most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. The agreement was highest during the winter but lower during late fall and spring. MODIS and VIIRS often mapped snow/no-snow transition zones as a cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicate that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67% and cloud 65.02% and 59.91%, respectively. While VIIRS and MODIS have a similar capacity to map snow cover, VIIRS has the potential to map snow cover area more accurately, for the successful development of climate data records.


2020 ◽  
Vol 12 (24) ◽  
pp. 4096 ◽  
Author(s):  
Kerry Meyer ◽  
Steven Platnick ◽  
Robert Holz ◽  
Steve Dutcher ◽  
Greg Quinn ◽  
...  

Climate studies, including trend detection and other time series analyses, necessarily require stable, well-characterized and long-term data records. For satellite-based geophysical retrieval datasets, such data records often involve merging the observational records of multiple similar, though not identical, instruments. The National Aeronautics and Space Administration (NASA) cloud mask (CLDMSK) and cloud-top and optical properties (CLDPROP) products are designed to bridge the observational records of the Moderate-resolution Imaging Spectroradiometer (MODIS) onboard NASA’s Aqua satellite and the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the joint NASA/National Oceanic and Atmospheric Administration (NOAA) Suomi National Polar-orbiting Partnership (SNPP) satellite and NOAA’s new generation of operational polar-orbiting weather platforms (NOAA-20+). Early implementations of the CLDPROP algorithms on Aqua MODIS and SNPP VIIRS suffered from large intersensor biases in cloud optical properties that were traced back to relative radiometric inconsistency in analogous shortwave channels on both imagers, with VIIRS generally observing brighter top-of-atmosphere spectral reflectance than MODIS (e.g., up to 5% brighter in the 0.67 µm channel). Radiometric adjustment factors for the SNPP and NOAA-20 VIIRS shortwave channels used in the cloud optical property retrievals are derived from an extensive analysis of the overlapping observational records with Aqua MODIS, specifically for homogenous maritime liquid water cloud scenes for which the viewing/solar geometry of MODIS and VIIRS match. Application of these adjustment factors to the VIIRS L1B prior to ingestion into the CLDMSK and CLDPROP algorithms yields improved intersensor agreement, particularly for cloud optical properties.


Sign in / Sign up

Export Citation Format

Share Document