scholarly journals AerGOM, an improved algorithm for stratospheric aerosol retrieval from GOMOS observations. Part 2: Intercomparisons

Author(s):  
Charles Étienne Robert ◽  
Christine Bingen ◽  
Filip Vanhellemont ◽  
Nina Mateshvili ◽  
Emmanuel Dekemper ◽  
...  

Abstract. AerGOM is a retrieval algorithm developed for the GOMOS instrument onboard Envisat as an alternative to the operational retrieval (IPF). AerGOM enhances the quality of the stratospheric aerosol extinction retrieval due to the extension of the spectral range used, a refinement of the aerosol spectral parameterisation, the simultaneous inversion of all atmospheric species as well as an improvement of the Rayleigh scattering correction. The retrieval algorithm allows for a good characterisation of the stratospheric aerosol extinction for a wide range of wavelengths. In this work, we present the results of stratospheric aerosol extinction comparisons between AerGOM and various spaceborne instruments (SAGE II, SAGE III, POAM III, ACE-MAESTRO and OSIRIS) for different wavelengths. Due to the unique observational technique of GOMOS, some of the results appear to be dependent on the star occultation parameters such as star apparent temperature and magnitude, solar zenith angle, latitude and obliquity. A systematic analysis is carried out to identify biases in the dataset, using the various spaceborne instruments as references. This bias characterization is extremely important for data users and might prove valuable for the production of unbiased long-term merged dataset.

2016 ◽  
Vol 9 (9) ◽  
pp. 4701-4718 ◽  
Author(s):  
Charles Étienne Robert ◽  
Christine Bingen ◽  
Filip Vanhellemont ◽  
Nina Mateshvili ◽  
Emmanuel Dekemper ◽  
...  

Abstract. AerGOM is a retrieval algorithm developed for the GOMOS instrument onboard Envisat as an alternative to the operational retrieval (IPF). AerGOM enhances the quality of the stratospheric aerosol extinction retrieval due to the extension of the spectral range used, refines the aerosol spectral parameterization, the simultaneous inversion of all atmospheric species as well as an improvement of the Rayleigh scattering correction. The retrieval algorithm allows for a good characterization of the stratospheric aerosol extinction for a wide range of wavelengths.In this work, we present the results of stratospheric aerosol extinction comparisons between AerGOM and various spaceborne instruments (SAGE II, SAGE III, POAM III, ACE-MAESTRO and OSIRIS) for different wavelengths. The aerosol extinction intercomparisons for λ < 700 nm and above 20 km show agreements with SAGE II version 7 and SAGE III version 4.0 within ±15 % and ±45 %, respectively. There is a strong positive bias below 20 km at λ < 700 nm, which suggests that cirrus clouds at these altitudes have a large impact on the extinction values. Comparisons performed with GOMOS IPF v6.01 alongside AerGOM show that at short wavelengths and altitudes below 20 km, IPF retrievals are more accurate when evaluated against SAGE II and SAGE III but are much less precise than AerGOM. A modified aerosol spectral parameterization can improve AerGOM in this spectral and altitude range and leads to results that have an accuracy similar to IPF retrievals. Comparisons of AerGOM aerosol extinction coefficients with OSIRIS and SAGE III measurements at wavelengths larger than 700 nm show a very large negative bias at altitudes above 25 km. Therefore, the use of AerGOM aerosol extinction data is not recommended for λ > 700 nm.Due to the unique observational technique of GOMOS, some of the results appear to be dependent on the star occultation parameters such as star apparent temperature and magnitude, solar zenith angle and latitude of observation. A systematic analysis is carried out to identify biases in the dataset, using the various spaceborne instruments as references. The quality of the aerosol retrieval is mainly influenced by the star magnitude, as well as star temperature to a lesser degree. To ensure good-quality profiles, we suggest to select occultations performed with star magnitude M < 2.5 and star temperature T > 6 × 103 K. Stray-light contamination is negligible for extinction coefficients below 700 nm using occultations performed with a solar zenith angle  > 110° but becomes important at larger wavelengths. Comparison of AerGOM results in the tropics shows an enhanced bias below 20 km that seem to confirm cirrus clouds as its cause. There are also differences between mid-latitude and tropical observations that cannot yet be explained, with a bias difference of up to 25 %.This bias characterization is extremely important for data users and might prove valuable for the production of unbiased long-term merged dataset.


2016 ◽  
Author(s):  
Filip Vanhellemont ◽  
Nina Mateshvili ◽  
Laurent Blanot ◽  
Charles E. Robert ◽  
Christine Bingen ◽  
...  

Abstract. The GOMOS instrument on EnviSat has succesfully demonstrated that a UV/Vis/NIR spaceborne stellar occultation instrument is capable of delivering quality data on the gaseous and particulate composition of Earth's atmosphere. Still, some problems related to data inversion remained to be treated. In the past, it was found that the aerosol extinction profile retrievals in the upper troposphere and stratosphere are of good quality at a reference wavelength of 500 nm, but suffer from anomalous, retrieval-related perturbations at other wavelengths. Identification of algorithmic problems and subsequent improvement was therefore necessary. This work has been carried out; the resulting AerGOM Level 2 retrieval algorithm together with the first data version AerGOMv1.0 forms the subject of this paper. First, a brief overview of the operational IPFv6.01 GOMOS algorithm is given, since the AerGOM algorithm is to a certain extent similar. Then, the discussion on the AerGOM algorithm specifically focuses on the new aspects that were implemented to tackle the aerosol retrieval problems. Finally, a first assess- ment of the obtained aerosol extinction data quality is presented, clearly showing significant improvement of aerosol profile shape, spectral behaviour and similarity to SAGE II data.


2013 ◽  
Vol 6 (3) ◽  
pp. 5065-5099
Author(s):  
L. A. Rieger ◽  
A. E. Bourassa ◽  
D. A. Degenstein

Abstract. The Optical Spectrograph and InfraRed Imaging System (OSIRIS) on-board the Odin satellite has now taken over a decade of limb scatter measurements that have been used to retrieve the Version 5 stratospheric aerosol extinction product. This product is retrieved using a representative particle size distribution to calculate scattering cross sections and scattering phase functions for the forward model calculations. In this work the information content of OSIRIS measurements with respect to stratospheric aerosol is systematically examined for the purpose of retrieving particle size information along with the extinction coefficient. The benefit of using measurements at different wavelengths and scattering angles in the retrieval is studied and it is found that incorporation of the 1530 nm radiance measurement is key for a robust retrieval of particle size information. It is also found that using OSIRIS measurements at different solar geometries simultaneously provides little additional benefit. Based on these results, an improved aerosol retrieval algorithm is developed that couples the retrieval of aerosol extinction and mode radius of a log-normal particle size distribution. Comparison of these results with coincident measurements from SAGE III show agreement in retrieved extinction to within approximately 10% over the bulk of the aerosol layer, which is comparable to Version 5. The retrieved particle size, when converted to Ångström coefficient, shows good qualitative agreement with SAGE II measurements made at somewhat shorter wavelengths.


2012 ◽  
Vol 5 (4) ◽  
pp. 5993-6035 ◽  
Author(s):  
F. Ernst ◽  
C. von Savigny ◽  
A. Rozanov ◽  
V. Rozanov ◽  
K.-U. Eichmann ◽  
...  

Abstract. Stratospheric aerosol extinction profiles are retrieved from SCIAMACHY/Envisat limb-scatter observations in the visible spectral range. The retrieval algorithm is based on a colour-index approach using the normalized limb-radiance profiles at 470 nm and 750 nm wavelength. The optimal estimation approach in combination with the radiative transfer model SCIATRAN is employed for the retrievals. This study presents a detailed description of the retrieval algorithm, and a sensitivity analysis investigating the impact of the most important parameters that affect the aerosol extinction profile retrieval accuracy. It is found that the parameter with the largest impact is surface albedo, particularly for SCIAMACHY observations in the Southern Hemisphere where the error in stratospheric aerosol extinction can be up to 50% if the surface albedo is not well known. The effect of errors in the assumed ozone and neutral density profiles on the aerosol profile retrievals is with generally less than 6% relatively small. The aerosol extinction profiles retrieved from SCIAMACHY are compared with co-located SAGE II solar occultation measurements of stratospheric aerosol extinction during the period 2003–2005. The mean aerosol extinction profiles averaged over all co-locations agree to within 20% between 15 and 35 km altitude. However, larger differences are observed at specific latitudes.


2010 ◽  
Vol 3 (4) ◽  
pp. 863-878 ◽  
Author(s):  
K. Clémer ◽  
M. Van Roozendael ◽  
C. Fayt ◽  
F. Hendrick ◽  
C. Hermans ◽  
...  

Abstract. We report on the retrieval of aerosol extinction profiles at four wavelengths from ground-based multi-axis differential absorption spectroscopy (MAXDOAS) measurements performed in Beijing, China. Measurements were made over a 10-month time period (June 2008 to April 2009) using a newly developed MAXDOAS instrument. A retrieval algorithm, based on an on-line implementation of the radiative transfer code LIDORT and the optimal estimation technique, has been designed to provide near real time information on aerosol extinction vertical profiles. The algorithm was applied to O4 measurements at four wavelengths (360, 477, 577, and 630 nm). The total aerosol optical depths (AODs) calculated from the retrieved profiles exhibit higher values in spring and summer and lower values in autumn and winter. Comparison of the retrieved total AODs with values from a co-located CIMEL sunphotometer revealed a good correlation. The best results are obtained for the UV region with a correlation coefficient (R) of 0.91 and a slope of the linear regression fit of 1.1. At the longest wavelength, R drops down to 0.67 and the slope increases to 1.5. The results confirm that good quality O4 slant column measurements are essential for the success of the retrievals. A method is presented to determine a correction factor to account for systematic errors. It is demonstrated that the algorithm is capable of reliably retrieving aerosol extinction profiles for a wide range of atmospheric conditions (total AODs at 360 nm ranging from about 0.1 to 3). The results open up new perspectives for the extension of the algorithm for the near real time retrieval of trace gas vertical profiles.


2018 ◽  
Vol 11 (12) ◽  
pp. 6495-6509 ◽  
Author(s):  
Zhong Chen ◽  
Pawan K. Bhartia ◽  
Robert Loughman ◽  
Peter Colarco ◽  
Matthew DeLand

Abstract. The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) has been flying on the Suomi National Polar-orbiting Partnership (S-NPP) satellite since October 2011. It is designed to produce ozone and aerosol vertical profiles at ∼2 km vertical resolution over the entire sunlit globe. Aerosol extinction profiles are computed with Mie theory using radiances measured at 675 nm. The operational Version 1.0 (V1.0) aerosol extinction retrieval algorithm assumes a bimodal lognormal aerosol size distribution (ASD) whose parameters were derived by combining an in situ measurement of aerosol microphysics with the Stratospheric Aerosol and Gas Experiment (SAGE II) aerosol extinction climatology. Internal analysis indicates that this bimodal lognormal ASD does not sufficiently explain the spectral dependence of LP-measured radiances. In this paper we describe the derivation of an improved aerosol size distribution, designated Version 1.5 (V1.5), for the LP retrieval algorithm. The new ASD uses a gamma function distribution that is derived from Community Aerosol and Radiation Model for Atmospheres (CARMA)-calculated results. A cumulative distribution fit derived from the gamma function ASD gives better agreement with CARMA results at small particle radii than bimodal or unimodal functions. The new ASD also explains the spectral dependence of LP-measured radiances better than the V1.0 ASD. We find that the impact of our choice of ASD on the retrieved extinctions varies strongly with the underlying reflectivity of the scene. Initial comparisons with collocated extinction profiles retrieved at 676 nm from the SAGE III instrument on the International Space Station (ISS) show a significant improvement in agreement for the LP V1.5 retrievals. Zonal mean extinction profiles agree to within 10  % between 19 and 29 km, and regression fits of collocated samples show improved correlation and reduced scatter compared to the V1.0 product. This improved agreement will motivate development of more sophisticated ASDs from CARMA results that incorporate latitude, altitude and seasonal variations in aerosol properties.


2021 ◽  
Vol 21 (19) ◽  
pp. 14871-14891
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Ulrike Niemeier ◽  
Sandra Wallis ◽  
Carlo Arosio ◽  
...  

Abstract. Stratospheric aerosols are an important component of the climate system. They not only change the radiative budget of the Earth but also play an essential role in ozone depletion. These impacts are particularly noticeable after volcanic eruptions when SO2 injected with the eruption reaches the stratosphere, oxidizes, and forms stratospheric aerosol. There have been several studies in which a volcanic eruption plume and the associated radiative forcing were analyzed using climate models and/or data from satellite measurements. However, few have compared vertically and temporally resolved volcanic plumes using both measured and modeled data. In this paper, we compared changes in the stratospheric aerosol loading after the 2018 Ambae eruption observed by satellite remote sensing measurements and simulated by a global aerosol model. We use vertical profiles of the aerosol extinction coefficient at 869 nm retrieved at the Institute of Environmental Physics (IUP) in Bremen from OMPS-LP (Ozone Mapping and Profiling Suite – Limb Profiler) observations. Here, we present the retrieval algorithm and a comparison of the obtained profiles with those from SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on board the International Space Station). The observed differences are within 25 % for most latitude bins, which indicates a reasonable quality of the retrieved limb aerosol extinction product. The volcanic plume evolution is investigated using both monthly mean aerosol extinction coefficients and 10 d averaged data. The measurement results were compared with the model output from MAECHAM5-HAM (ECHAM for short). In order to simulate the eruption accurately, we use SO2 injection estimates from OMPS and OMI (Ozone Monitoring Instrument) for the first phase of eruption and the TROPOspheric Monitoring Instrument (TROPOMI) for the second phase. Generally, the agreement between the vertical and geographical distribution of the aerosol extinction coefficient from OMPS-LP and ECHAM is quite remarkable, in particular, for the second phase. We attribute the good consistency between the model and the measurements to the precise estimation of injected SO2 mass and height, as well as to the nudging to ECMWF ERA5 reanalysis data. Additionally, we compared the radiative forcing (RF) caused by the increase in the aerosol loading in the stratosphere after the eruption. After accounting for the uncertainties from different RF calculation methods, the RFs from ECHAM and OMPS-LP agree quite well. We estimate the tropical (20∘ N to 20∘ S) RF from the second Ambae eruption to be about −0.13 W m−2.


2020 ◽  
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Ulrike Niemeier ◽  
Sandra Peglow ◽  
Carlo Arosio ◽  
...  

Abstract. Stratospheric aerosols are an important component of the climate system. They not only change the radiative budget of the Earth but also play an essential role in ozone depletion. Most noticeable those effects are after volcanic eruptions when SO2 injected with the eruption reaches the stratosphere, oxidizes and forms stratospheric aerosol. There have been several studies, where a volcanic eruption plume and the associated radiative forcing were analyzed using climate models. Besides, volcanic eruptions were studied using the data from satellite measurements; however, studies combining both models and measurement data are rare. In this paper, we compared changes in the stratospheric aerosol loading after the 2018 Ambae eruption observed by satellite remote sensing measurements and by a global aerosol model. We use vertical profiles of aerosol extinction coefficient at 869 nm retrieved at IUP Bremen from OMPS-LP (Ozone Mapping and Profiling Suite – Limb Profiler) observations. Here, we present the retrieval algorithm as well as a comparison of the obtained profiles with those from SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III onboard International Space Station). The observed differences are within 25 % for the most latitude bins, which indicates a reasonable quality of the retrieved limb aerosol extinction product. The volcanic plume evolution is investigated using both: monthly mean aerosol extinction coefficients and 10-day averaged data. The measurement results were compared with the model output from ECHAM5-HAM. In order to simulate the eruption accurately, we use SO2 injections estimates from OMPS and OMI for the first phase of eruption and TROPOMI for the second phase. Generally, the agreement between the vertical and geographical distribution of the aerosol extinction coefficient from OMPS-LP and ECHAM is quite remarkable, in particular, for the second phase. We attribute the good consistency between the model and the measurements to the precise estimation of injected SO2 mass and height as well as through nudging to ECMWF reanalysis data. Additionally, we compared the radiative forcing (RF) caused by the increase of the aerosol loading in the stratosphere after the eruption. After accounting for the uncertainties from different RF calculation methods, the RFs from ECHAM and OMPS-LP agree quite well. We estimate the tropical (20° N to 20° S) RF from the second Ambae eruption to be about −0.13 W/m2.


2020 ◽  
Vol 13 (6) ◽  
pp. 3471-3485
Author(s):  
Zhong Chen ◽  
Pawan K. Bhartia ◽  
Omar Torres ◽  
Glen Jaross ◽  
Robert Loughman ◽  
...  

Abstract. The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) has been taking limb-scattered measurements since April 2012. It is designed to produce ozone and aerosol vertical profiles at a 1.6 km vertical resolution over the entire sunlit globe. The Version 1.5 (V1.5) aerosol extinction retrieval algorithm provides aerosol extinction profiles using observed radiances at 675 nm. The algorithm assumes Mie theory and a gamma function aerosol size distribution for the stratospheric aerosol that is derived from results calculated by the Community Aerosol and Radiation Model for Atmospheres (CARMA). In this paper, we compare V1.5 LP aerosol profiles with SAGE III/ISS solar occultation observations for the period from June 2017 to May 2019, when both measurements were available to evaluate our ability to characterize background aerosol conditions. Overall, LP extinction profiles agree with SAGE III/ISS data to within ±25 % for altitudes between 19 and 27 km, even during periods perturbed by volcanic eruptions or intense forest fires. In this altitude range, the slope parameter of linear fitting of LP extinction values with respect to SAGE III/ISS measurements is close to 1.0, with Pearson correlation coefficients of r≥0.95, indicating that the LP aerosol data are reliable in that altitude range. Comparisons of extinction time series show that both instruments capture the variability of the stratospheric aerosol layer quite well, and the differences between the two instruments vary from 0 % to ±25 % depending on altitude, latitude, and time. In contrast, we find erroneous seasonal variations in the OMPS/LP Version 1.5 dataset, which usually exist below 20 km in the Southern Hemisphere due to the lack of sensitivity to particles when the scattering angle (SA) is greater than 145∘. We also find that LP-retrieved extinction is systematically higher than SAGE III/ISS observations at altitudes above 28 km and systematically lower below 19 km in the tropics with significant biases up to ±13 %. This is likely due in part to the fact that the actual aerosol size distribution is altitude dependent. There are also other reasons related to cloud contamination, wavelength limitations, aerosol loading, and the influence of the viewing configuration.


2018 ◽  
Author(s):  
Zhong Chen ◽  
Pawan K. Bhartia ◽  
Robert Loughman ◽  
Peter Colarco ◽  
Matthew DeLand

Abstract. The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) has been flying on the Suomi NPP satellite since October 2011. It is designed to produce ozone and aerosol vertical profiles at ~2 km vertical resolution over the entire sunlit globe. Aerosol extinction profiles are computed with Mie theory using radiances measured at 675 nm. The operational Version 1.0 (V1.0) aerosol extinction retrieval algorithm assumes a bimodal lognormal aerosol size distribution (ASD) whose parameters were derived by combining an in situ measurement of aerosol microphysics with the SAGE II aerosol extinction climatology. Internal analysis indicates that this bimodal lognormal ASD does not sufficiently explain the spectral dependence of LP measured radiances. In this paper we describe the derivation of an improved aerosol size distribution, designated Version 1.5 (V1.5), for the LP retrieval algorithm. The new ASD uses a gamma function distribution that is derived from Community Aerosol and Radiation Model for Atmospheres (CARMA) calculated results. A cumulative distribution fit derived from the gamma function ASD gives better agreement with CARMA results at small particle radii than bimodal or unimodal functions. The new ASD also explains the spectral dependence of LP measured radiances better than the V1.0 ASD. We find that the impact of our choice of ASD on the retrieved extinctions varies strongly with the underlying reflectivity of the scene. Initial comparisons with co-located extinction profiles retrieved at 676 nm from the SAGE III/ISS instrument show a significant improvement in agreement for the LP V1.5 retrievals. Zonal mean extinction profiles agree to within 10 % between 19–29 km, and regression fits of collocated samples show improved correlation and reduced scatter compared to the V1.0 product. This improved agreement will motivate development of more sophisticated ASDs from CARMA results that incorporate latitude, altitude, and seasonal variations in aerosol properties.


Sign in / Sign up

Export Citation Format

Share Document