scholarly journals AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations. Part 1: Algorithm development

Author(s):  
Filip Vanhellemont ◽  
Nina Mateshvili ◽  
Laurent Blanot ◽  
Charles E. Robert ◽  
Christine Bingen ◽  
...  

Abstract. The GOMOS instrument on EnviSat has succesfully demonstrated that a UV/Vis/NIR spaceborne stellar occultation instrument is capable of delivering quality data on the gaseous and particulate composition of Earth's atmosphere. Still, some problems related to data inversion remained to be treated. In the past, it was found that the aerosol extinction profile retrievals in the upper troposphere and stratosphere are of good quality at a reference wavelength of 500 nm, but suffer from anomalous, retrieval-related perturbations at other wavelengths. Identification of algorithmic problems and subsequent improvement was therefore necessary. This work has been carried out; the resulting AerGOM Level 2 retrieval algorithm together with the first data version AerGOMv1.0 forms the subject of this paper. First, a brief overview of the operational IPFv6.01 GOMOS algorithm is given, since the AerGOM algorithm is to a certain extent similar. Then, the discussion on the AerGOM algorithm specifically focuses on the new aspects that were implemented to tackle the aerosol retrieval problems. Finally, a first assess- ment of the obtained aerosol extinction data quality is presented, clearly showing significant improvement of aerosol profile shape, spectral behaviour and similarity to SAGE II data.

2016 ◽  
Vol 9 (9) ◽  
pp. 4687-4700 ◽  
Author(s):  
Filip Vanhellemont ◽  
Nina Mateshvili ◽  
Laurent Blanot ◽  
Charles Étienne Robert ◽  
Christine Bingen ◽  
...  

Abstract. The GOMOS instrument on Envisat has successfully demonstrated that a UV–Vis–NIR spaceborne stellar occultation instrument is capable of delivering quality data on the gaseous and particulate composition of Earth's atmosphere. Still, some problems related to data inversion remained to be examined. In the past, it was found that the aerosol extinction profile retrievals in the upper troposphere and stratosphere are of good quality at a reference wavelength of 500 nm but suffer from anomalous, retrieval-related perturbations at other wavelengths. Identification of algorithmic problems and subsequent improvement was therefore necessary. This work has been carried out; the resulting AerGOM Level 2 retrieval algorithm together with the first data version AerGOMv1.0 forms the subject of this paper. The AerGOM algorithm differs from the standard GOMOS IPF processor in a number of important ways: more accurate physical laws have been implemented, all retrieval-related covariances are taken into account, and the aerosol extinction spectral model is strongly improved. Retrieval examples demonstrate that the previously observed profile perturbations have disappeared, and the obtained extinction spectra look in general more consistent. We present a detailed validation study in a companion paper; here, to give a first idea of the data quality, a worst-case comparison at 386 nm shows SAGE II–AerGOM correlation coefficients that are up to 1 order of magnitude larger than the ones obtained with the GOMOS IPFv6.01 data set.


2019 ◽  
Vol 11 (7) ◽  
pp. 844 ◽  
Author(s):  
Fan Wu ◽  
Peter Cornillon ◽  
Lei Guan ◽  
Katherine Kilpatrick

Sea surface temperature (SST) fields obtained from the series of space-borne five-channel Advanced Very High Resolution Radiometers (AVHRRs) provide the longest continuous time series of global SST available to date (1981–present). As a result, these data have been used for many studies and significant effort has been devoted to their careful calibration in an effort to provide a climate quality data record. However, little attention has been given to the local precision of the SST retrievals obtained from these instruments, which we refer to as the pixel-to-pixel (p2p) variability, a characteristic important in the ability to resolve structures such as ocean fronts characterized by small gradients in the SST field. In this study, the p2p variability is estimated for Level-2 SST fields obtained with the Pathfinder retrieval algorithm for AVHRRs on NOAA-07, 9, 11, 12 and 14-19. These estimates are stratified by year, season, day/night and along-scan/along-track. The overall variability ranges from 0.10 K to 0.21 K. For each satellite, the along-scan variability is between 10 and 20% smaller than the along-track variability (except for NOAA-16 nighttime for which it is approximately 30% smaller) and the summer and fall σ s are between 10 and 15% smaller than the winter and spring σ s. The differences between along-track and along-scan are attributed to the way in which the instrument has been calibrated. The seasonal differences result from the T 4 − T 5 term in the Pathfinder retrieval algorithm. This term is shown to be a major contributor to the p2p variability and it is shown that its impact could be substantially reduced without a deleterious effect on the overall p2p σ of the resulting products by spatially averaging it as part of the retrieval process. The AVHRR/3s (NOAA-15 through 19) were found to be relatively stable with trends in the p2p variability of at most 0.015 K/decade.


2013 ◽  
Vol 6 (3) ◽  
pp. 5065-5099
Author(s):  
L. A. Rieger ◽  
A. E. Bourassa ◽  
D. A. Degenstein

Abstract. The Optical Spectrograph and InfraRed Imaging System (OSIRIS) on-board the Odin satellite has now taken over a decade of limb scatter measurements that have been used to retrieve the Version 5 stratospheric aerosol extinction product. This product is retrieved using a representative particle size distribution to calculate scattering cross sections and scattering phase functions for the forward model calculations. In this work the information content of OSIRIS measurements with respect to stratospheric aerosol is systematically examined for the purpose of retrieving particle size information along with the extinction coefficient. The benefit of using measurements at different wavelengths and scattering angles in the retrieval is studied and it is found that incorporation of the 1530 nm radiance measurement is key for a robust retrieval of particle size information. It is also found that using OSIRIS measurements at different solar geometries simultaneously provides little additional benefit. Based on these results, an improved aerosol retrieval algorithm is developed that couples the retrieval of aerosol extinction and mode radius of a log-normal particle size distribution. Comparison of these results with coincident measurements from SAGE III show agreement in retrieved extinction to within approximately 10% over the bulk of the aerosol layer, which is comparable to Version 5. The retrieved particle size, when converted to Ångström coefficient, shows good qualitative agreement with SAGE II measurements made at somewhat shorter wavelengths.


2016 ◽  
Vol 9 (9) ◽  
pp. 4701-4718 ◽  
Author(s):  
Charles Étienne Robert ◽  
Christine Bingen ◽  
Filip Vanhellemont ◽  
Nina Mateshvili ◽  
Emmanuel Dekemper ◽  
...  

Abstract. AerGOM is a retrieval algorithm developed for the GOMOS instrument onboard Envisat as an alternative to the operational retrieval (IPF). AerGOM enhances the quality of the stratospheric aerosol extinction retrieval due to the extension of the spectral range used, refines the aerosol spectral parameterization, the simultaneous inversion of all atmospheric species as well as an improvement of the Rayleigh scattering correction. The retrieval algorithm allows for a good characterization of the stratospheric aerosol extinction for a wide range of wavelengths.In this work, we present the results of stratospheric aerosol extinction comparisons between AerGOM and various spaceborne instruments (SAGE II, SAGE III, POAM III, ACE-MAESTRO and OSIRIS) for different wavelengths. The aerosol extinction intercomparisons for λ < 700 nm and above 20 km show agreements with SAGE II version 7 and SAGE III version 4.0 within ±15 % and ±45 %, respectively. There is a strong positive bias below 20 km at λ < 700 nm, which suggests that cirrus clouds at these altitudes have a large impact on the extinction values. Comparisons performed with GOMOS IPF v6.01 alongside AerGOM show that at short wavelengths and altitudes below 20 km, IPF retrievals are more accurate when evaluated against SAGE II and SAGE III but are much less precise than AerGOM. A modified aerosol spectral parameterization can improve AerGOM in this spectral and altitude range and leads to results that have an accuracy similar to IPF retrievals. Comparisons of AerGOM aerosol extinction coefficients with OSIRIS and SAGE III measurements at wavelengths larger than 700 nm show a very large negative bias at altitudes above 25 km. Therefore, the use of AerGOM aerosol extinction data is not recommended for λ > 700 nm.Due to the unique observational technique of GOMOS, some of the results appear to be dependent on the star occultation parameters such as star apparent temperature and magnitude, solar zenith angle and latitude of observation. A systematic analysis is carried out to identify biases in the dataset, using the various spaceborne instruments as references. The quality of the aerosol retrieval is mainly influenced by the star magnitude, as well as star temperature to a lesser degree. To ensure good-quality profiles, we suggest to select occultations performed with star magnitude M < 2.5 and star temperature T > 6 × 103 K. Stray-light contamination is negligible for extinction coefficients below 700 nm using occultations performed with a solar zenith angle  > 110° but becomes important at larger wavelengths. Comparison of AerGOM results in the tropics shows an enhanced bias below 20 km that seem to confirm cirrus clouds as its cause. There are also differences between mid-latitude and tropical observations that cannot yet be explained, with a bias difference of up to 25 %.This bias characterization is extremely important for data users and might prove valuable for the production of unbiased long-term merged dataset.


2020 ◽  
Author(s):  
Alexander Sinyuk ◽  
Brent N. Holben ◽  
Thomas F. Eck ◽  
David M. Giles ◽  
Ilya Slutsker ◽  
...  

Abstract. The Aerosol Robotic Network (AERONET) version 3 (V3) aerosol retrieval algorithm is described, which is based on the version 2 (V2) algorithm with numerous updates. Comparisons of V3 aerosol retrievals to those of V2 are presented, along with a new approach to estimate uncertainties in many of the retrieved aerosol parameters. Changes in V3 aerosol retrieval algorithm include: 1) a new polarized radiative transfer code (RTC), which replaced the scalar RTC of V2, 2) detailed characterization of gas absorption by adding NO2 and H2O to specify total gas absorption in the atmospheric column, specification of vertical profiles of all the atmospheric species, 3) new Bidirectional Reflectance Distribution Function (BRDF) parameters for land sites adopted from the MODIS BRDF/Albedo product, 4) a new version of the extraterrestrial solar flux spectrum, and 5) new temperature correction procedure of both direct sun and sky radiance measurements. The potential effect of each change in V3 on single scattering albedo (SSA) retrievals was analyzed. The operational almucantar retrievals of V2 versus V3 were compared for four AERONET sites: GSFC, Mezaira, Mongu, and Kanpur. Analysis showed very good agreement in retrieved parameters of the size distributions. Comparisons of SSA retrievals for dust aerosols (Mezaira) showed a good agreement in 440 nm SSA while for longer wavelengths V3 SSAs are systematically higher than those of V2 with the largest mean difference at 675 nm due to cumulative effects of both extraterrestrial solar flux and BRDF changes. For non-dust aerosols, the largest SSA deviation is at 675 nm due to differences in extraterrestrial solar flux spectrums used in each version. Further, the SSA 675 nm mean differences are very different for weakly (GSFC) and strongly (Mongu) absorbing aerosols which is explained by the lower sensitivity to a bias in aerosol scattering optical depth by less absorbing aerosols. A new hybrid (HYB) sky radiance measurements scan is introduced and discussed. The HYB combines features of scans in two different planes to maximize the range of scattering angles and achieve scan symmetry, thereby allowing for cloud screening and spatial averaging which is an advantage over the principal plane scan that lacks robust symmetry. We show that due to extended range of scattering angles HYB SSA retrievals for dust aerosols exhibit smaller variability with SZA than those of almucantar (ALM) which allows extending HYB SSA retrievals to solar zenith angles (SZA) less than 50° to as small as 25°. The comparison of SSA retrievals from closely time matched HYB and ALM scans in the 50° to 75° SZA range showed good agreement with the differences below ~0.005. We also present an approach to estimate retrieval uncertainties which utilizes the variability in retrieved parameters generated by perturbing both measurements and auxiliary input parameters as a proxy for retrievals uncertainty. The perturbations in measurements and auxiliary inputs are assumed as estimated biases in aerosol optical depth (AOD), radiometric calibration of sky radiances combined with solar spectral irradiance, and surface reflectance. For each set of Level 2 Sun/sky radiometer observations, 27 inputs corresponding to 27 combinations of biases were produced and separately inverted and to generate the following statistics of the inversion results: average, standard deviation, minimum and maximum values. From these statistics standard deviation (labeled as U27) is used as a proxy for estimated uncertainty and a lookup table (LUT) approach was implemented to reduce the computational time. The U27 climatological LUT was generated from the entire AERONET almucantar (1993–2018) and hybrid (2014–2018) scan database by binning U27s in AOD (440 nm), Angstrom Exponent (AE, 440–870nm), and SSA (440, 675, 870, 1020 nm). Using this LUT approach, the uncertainty estimates U27 for each individual V3 Level 2 retrieval can be obtained by interpolation using the corresponding measured and inverted combination of AOD, AE, and SSA.


2020 ◽  
Vol 13 (6) ◽  
pp. 3375-3411 ◽  
Author(s):  
Alexander Sinyuk ◽  
Brent N. Holben ◽  
Thomas F. Eck ◽  
David M. Giles ◽  
Ilya Slutsker ◽  
...  

Abstract. The Aerosol Robotic Network (AERONET) Version 3 (V3) aerosol retrieval algorithm is described, which is based on the Version 2 (V2) algorithm with numerous updates. Comparisons of V3 aerosol retrievals to those of V2 are presented, along with a new approach to estimate uncertainties in many of the retrieved aerosol parameters. Changes in the V3 aerosol retrieval algorithm include (1) a new polarized radiative transfer code (RTC), which replaced the scalar RTC of V2, (2) detailed characterization of gas absorption by adding NO2 and H2O to specify total gas absorption in the atmospheric column, specification of vertical profiles of all the atmospheric species, (3) new bidirectional reflectance distribution function (BRDF) parameters for land sites adopted from the MODIS BRDF/Albedo product, (4) a new version of the extraterrestrial solar flux spectrum, and (5) a new temperature correction procedure of both direct Sun and sky radiance measurements. The potential effect of each change in V3 on single scattering albedo (SSA) retrievals was analyzed. The operational almucantar retrievals of V2 versus V3 were compared for four AERONET sites: GSFC, Mezaira, Mongu, and Kanpur. Analysis showed very good agreement in retrieved parameters of the size distributions. Comparisons of SSA retrievals for dust aerosols (Mezaira) showed a good agreement in 440 nm SSA, while for longer wavelengths V3 SSAs are systematically higher than those of V2, with the largest mean difference at 675 nm due to cumulative effects of both extraterrestrial solar flux and BRDF changes. For non-dust aerosols, the largest SSA deviation is at 675 nm due to differences in extraterrestrial solar flux spectrums used in each version. Further, the SSA 675 nm mean differences are very different for weakly (GSFC) and strongly (Mongu) absorbing aerosols, which is explained by the lower sensitivity to a bias in aerosol scattering optical depth by less absorbing aerosols. A new hybrid (HYB) sky radiance measurement scan is introduced and discussed. The HYB combines features of scans in two different planes to maximize the range of scattering angles and achieve scan symmetry, thereby allowing for cloud screening and spatial averaging, which is an advantage over the principal plane scan that lacks robust symmetry. We show that due to an extended range of scattering angles, HYB SSA retrievals for dust aerosols exhibit smaller variability with solar zenith angles (SZAs) than those of almucantar (ALM), which allows extension of HYB SSA retrievals to SZAs less than 50∘ to as small as 25∘. The comparison of SSA retrievals from closely time-matched HYB and ALM scans in the 50 to 75∘ SZA range showed good agreement with the differences below ∼0.005. We also present an approach to estimate retrieval uncertainties which utilizes the variability in retrieved parameters generated by perturbing both measurements and auxiliary input parameters as a proxy for retrieval uncertainty. The perturbations in measurements and auxiliary inputs are assumed as estimated biases in aerosol optical depth (AOD), radiometric calibration of sky radiances combined with solar spectral irradiance, and surface reflectance. For each set of Level 2 Sun/sky radiometer observations, 27 inputs corresponding to 27 combinations of biases were produced and separately inverted to generate the following statistics of the inversion results: average, standard deviation, minimum and maximum values. From these statistics, standard deviation (labeled U27) is used as a proxy for estimated uncertainty, and a lookup table (LUT) approach was implemented to reduce the computational time. The U27 climatological LUT was generated from the entire AERONET almucantar (1993–2018) and hybrid (2014–2018) scan databases by binning U27s in AOD (440 nm), Angström exponent (AE, 440–870 nm), and SSA (440, 675, 870, 1020 nm). Using this LUT approach, the uncertainty estimates U27 for each individual V3 Level 2 retrieval can be obtained by interpolation using the corresponding measured and inverted combination of AOD, AE, and SSA.


2012 ◽  
Vol 5 (4) ◽  
pp. 5993-6035 ◽  
Author(s):  
F. Ernst ◽  
C. von Savigny ◽  
A. Rozanov ◽  
V. Rozanov ◽  
K.-U. Eichmann ◽  
...  

Abstract. Stratospheric aerosol extinction profiles are retrieved from SCIAMACHY/Envisat limb-scatter observations in the visible spectral range. The retrieval algorithm is based on a colour-index approach using the normalized limb-radiance profiles at 470 nm and 750 nm wavelength. The optimal estimation approach in combination with the radiative transfer model SCIATRAN is employed for the retrievals. This study presents a detailed description of the retrieval algorithm, and a sensitivity analysis investigating the impact of the most important parameters that affect the aerosol extinction profile retrieval accuracy. It is found that the parameter with the largest impact is surface albedo, particularly for SCIAMACHY observations in the Southern Hemisphere where the error in stratospheric aerosol extinction can be up to 50% if the surface albedo is not well known. The effect of errors in the assumed ozone and neutral density profiles on the aerosol profile retrievals is with generally less than 6% relatively small. The aerosol extinction profiles retrieved from SCIAMACHY are compared with co-located SAGE II solar occultation measurements of stratospheric aerosol extinction during the period 2003–2005. The mean aerosol extinction profiles averaged over all co-locations agree to within 20% between 15 and 35 km altitude. However, larger differences are observed at specific latitudes.


2016 ◽  
Author(s):  
Y. Che ◽  
Y. Xue ◽  
L. Mei ◽  
J. Guang ◽  
H. Xu ◽  
...  

Abstract. The Advanced Along-Track Scanning Radiometer (AATSR) aboard on ENVISAT is used to observe the Earth by dual-view. The AATSR data can be used to retrieve aerosol optical depth (AOD) over both land and ocean, which is an important merit in the characterization of aerosol properties. In recent years, aerosol retrieval algorithms both over land and ocean have been developed, taking advantages of the feature of dual-view which can help eliminate contribution of Earth's surface to top of atmosphere (TOA) reflectance. Aerosol_cci project as a part of Climate Change Initiative (CCI) provides users three AOD retrieval algorithms for AATSR data, including the Swansea algorithm (SU), the ATSR-2ATSR dual view aerosol retrieval algorithm (ADV) and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC). The Validation team of Aerosol-CCI project has validated AOD (both Level 2 and Level 3 products) and AE (Level 2 product only) against the AERONET data in a round robin evaluation using validation tool of AeroCOM (Aerosol Comparison between Observations and Models) project. For the purpose of evaluating different performances of these three algorithms on calculating AODs over mainland China, we introduce ground-based data from the CARSNET (the China Aerosol Remote Sensing Network) which is designed for aerosol observation in China. Because China is vast in territory and of great differences in surface, the combination of the AEROENT and the CATRNET data can validate L2 AOD products more comprehensively. The validation results show different performances of these products in 2007, 2008 and 2010. The SU algorithm has very good performance over sites with different surface conditions in mainland China from March to October, but it underestimates AOD slightly with varying mean bias error (MBE) from 0.05 to 0.10 over surface of barren or sparsely vegetation in western China. The ADV product has same precision with high correlation coefficient (CC) larger than 0.90 over most of sites and same error distribution as the SU product. The main limits of ADV algorithm are underestimation and applicability, especially it occurs obvious underestimation over sites of Datong, Lanzhou and Urmuchi where the dominated land cover is grassland with MBE larger than 0.2 and the main source of aerosol is coal combustion and dust. The ORAC algorithm has the ability of retrieving AOD at different ranges including high AOD (larger than 1.0), however, the stability will decease significantly as AOD grows, especially when AOD > 1.0. In addition, ORAC product get matches successfully collocated with CARSNET in winter (December, January and February), whereas other validation results lack matches during winter.


2018 ◽  
Vol 11 (12) ◽  
pp. 6495-6509 ◽  
Author(s):  
Zhong Chen ◽  
Pawan K. Bhartia ◽  
Robert Loughman ◽  
Peter Colarco ◽  
Matthew DeLand

Abstract. The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) has been flying on the Suomi National Polar-orbiting Partnership (S-NPP) satellite since October 2011. It is designed to produce ozone and aerosol vertical profiles at ∼2 km vertical resolution over the entire sunlit globe. Aerosol extinction profiles are computed with Mie theory using radiances measured at 675 nm. The operational Version 1.0 (V1.0) aerosol extinction retrieval algorithm assumes a bimodal lognormal aerosol size distribution (ASD) whose parameters were derived by combining an in situ measurement of aerosol microphysics with the Stratospheric Aerosol and Gas Experiment (SAGE II) aerosol extinction climatology. Internal analysis indicates that this bimodal lognormal ASD does not sufficiently explain the spectral dependence of LP-measured radiances. In this paper we describe the derivation of an improved aerosol size distribution, designated Version 1.5 (V1.5), for the LP retrieval algorithm. The new ASD uses a gamma function distribution that is derived from Community Aerosol and Radiation Model for Atmospheres (CARMA)-calculated results. A cumulative distribution fit derived from the gamma function ASD gives better agreement with CARMA results at small particle radii than bimodal or unimodal functions. The new ASD also explains the spectral dependence of LP-measured radiances better than the V1.0 ASD. We find that the impact of our choice of ASD on the retrieved extinctions varies strongly with the underlying reflectivity of the scene. Initial comparisons with collocated extinction profiles retrieved at 676 nm from the SAGE III instrument on the International Space Station (ISS) show a significant improvement in agreement for the LP V1.5 retrievals. Zonal mean extinction profiles agree to within 10  % between 19 and 29 km, and regression fits of collocated samples show improved correlation and reduced scatter compared to the V1.0 product. This improved agreement will motivate development of more sophisticated ASDs from CARMA results that incorporate latitude, altitude and seasonal variations in aerosol properties.


2021 ◽  
Vol 21 (19) ◽  
pp. 14871-14891
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Ulrike Niemeier ◽  
Sandra Wallis ◽  
Carlo Arosio ◽  
...  

Abstract. Stratospheric aerosols are an important component of the climate system. They not only change the radiative budget of the Earth but also play an essential role in ozone depletion. These impacts are particularly noticeable after volcanic eruptions when SO2 injected with the eruption reaches the stratosphere, oxidizes, and forms stratospheric aerosol. There have been several studies in which a volcanic eruption plume and the associated radiative forcing were analyzed using climate models and/or data from satellite measurements. However, few have compared vertically and temporally resolved volcanic plumes using both measured and modeled data. In this paper, we compared changes in the stratospheric aerosol loading after the 2018 Ambae eruption observed by satellite remote sensing measurements and simulated by a global aerosol model. We use vertical profiles of the aerosol extinction coefficient at 869 nm retrieved at the Institute of Environmental Physics (IUP) in Bremen from OMPS-LP (Ozone Mapping and Profiling Suite – Limb Profiler) observations. Here, we present the retrieval algorithm and a comparison of the obtained profiles with those from SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on board the International Space Station). The observed differences are within 25 % for most latitude bins, which indicates a reasonable quality of the retrieved limb aerosol extinction product. The volcanic plume evolution is investigated using both monthly mean aerosol extinction coefficients and 10 d averaged data. The measurement results were compared with the model output from MAECHAM5-HAM (ECHAM for short). In order to simulate the eruption accurately, we use SO2 injection estimates from OMPS and OMI (Ozone Monitoring Instrument) for the first phase of eruption and the TROPOspheric Monitoring Instrument (TROPOMI) for the second phase. Generally, the agreement between the vertical and geographical distribution of the aerosol extinction coefficient from OMPS-LP and ECHAM is quite remarkable, in particular, for the second phase. We attribute the good consistency between the model and the measurements to the precise estimation of injected SO2 mass and height, as well as to the nudging to ECMWF ERA5 reanalysis data. Additionally, we compared the radiative forcing (RF) caused by the increase in the aerosol loading in the stratosphere after the eruption. After accounting for the uncertainties from different RF calculation methods, the RFs from ECHAM and OMPS-LP agree quite well. We estimate the tropical (20∘ N to 20∘ S) RF from the second Ambae eruption to be about −0.13 W m−2.


Sign in / Sign up

Export Citation Format

Share Document