Review of ‘Thin ice clouds in the Arctic: Cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry’

2016 ◽  
Author(s):  
Anonymous
2016 ◽  
Author(s):  
Yann Blanchard ◽  
Alain Royer ◽  
Norman T. O'Neill ◽  
David D. Turner ◽  
Edwin W. Eloranta

Abstract. Multi-band thermal measurements of zenith sky radiance, along with height profile information, were used in a retrieval algorithm, to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian high-Arctic. Ground-based thermal infrared (IR) radiances for 150 semi-transparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, thickness and bottom altitude. A look up table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to values of 2.6 and to separate thin ice clouds into two classes: 1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 μm), and 2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 μm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed across three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on infrared radiance measurements at high spectral resolution between 8 and 21 μm was also carried out. It confirms the robustness of the optical depth retrieval and the fact that the radiometer retrieval was sensitive to small particle (TIC1) sizes.


2017 ◽  
Vol 10 (6) ◽  
pp. 2129-2147 ◽  
Author(s):  
Yann Blanchard ◽  
Alain Royer ◽  
Norman T. O'Neill ◽  
David D. Turner ◽  
Edwin W. Eloranta

Abstract. Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter  ≤  30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter  >  30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 =  0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.


2010 ◽  
Vol 10 (3) ◽  
pp. 7215-7264
Author(s):  
A. Bozzo ◽  
T. Maestri ◽  
R. Rizzi

Abstract. Measurements taken during the 2003 Pacific THORPEX Observing System Test (P-TOST) by the MODIS Airborne Simulator (MAS), the Scanning High-resolution Interferometer Sounder (S-HIS) and the Cloud Physics Lidar (CPL) are compared to simulations performed with a line-by-line and multiple scattering modeling methodology (LBLMS). Formerly used for infrared hyper-spectral data analysis, LBLMS has been extended to the visible and near infrared with the inclusion of surface bi-directional reflectance properties. A number of scenes are evaluated: two clear scenes, one with nadir geometry and one cross-track encompassing sun glint, and three cloudy scenes, all with nadir geometry. CPL data is used to estimate the particulate optical depth at 532 nm for the clear and cloudy scenes. Cloud optical depth is also retrieved from S-HIS infrared window radiances, and it agrees with CPL values, to within natural variability. MAS data are simulated convolving high resolution radiances. The paper discusses the results of the comparisons for the clear cases and for the three cloudy cases. LBLMS clear simulations agree with MAS data to within 20% in the shortwave (SW) and near infrared (NIR) spectrum and within 2 K in the infrared (IR) range. It is shown that cloudy sky simulations using cloud parameters retrieved from IR radiances systematically underestimate the measured radiance in the SW and NIR by nearly 50%, although the IR retrieved optical thickness agree with same measured by CPL. MODIS radiances measured from Terra are also compared to LBLMS simulations in cloudy conditions using retrieved cloud optical depth and effective radius from MODIS, to understand the origin for the observed discrepancies. It is shown that the simulations agree, to within natural variability, with measurements in selected MODIS SW bands. The paper dwells on a possible explanation of these contraddictory results, involving the phase function of ice particles in the shortwave.


2020 ◽  
Vol 12 (21) ◽  
pp. 3574
Author(s):  
Gianluca Di Natale ◽  
Giovanni Bianchini ◽  
Massimo Del Guasta ◽  
Marco Ridolfi ◽  
Tiziano Maestri ◽  
...  

Optical and microphysical cloud properties are retrieved from measurements acquired in 2013 and 2014 at the Concordia base station in the Antarctic Plateau. Two sensors are used synergistically: a Fourier transform spectroradiometer named REFIR-PAD (Radiation Explorer in Far Infrared-Prototype for Applications and Developments) and a backscattering-depolarization LiDAR. First, in order to identify the cloudy scenes and assess the cloud thermodynamic phase, the REFIR-PAD spectral radiances are ingested by a machine learning algorithm called Cloud Identification and Classification (CIC). For each of the identified cloudy scenes, the nearest (in time) LiDAR backscattering profile is processed by the Polar Threshold (PT) algorithm that allows derivation of the cloud top and bottom heights. Subsequently, using the CIC and PT results as external constraints, the Simultaneous Atmospheric and Clouds Retrieval (SACR) code is applied to the REFIR-PAD spectral radiances. SACR simultaneously retrieves cloud optical depth and effective dimensions and atmospheric vertical profiles of water vapor and temperature. The analysis determines an average effective diameter of 28 μm with an optical depth of 0.76 for the ice clouds. Water clouds are only detected during the austral Summer, and the retrieved properties provide an average droplet diameter of 9 μm and average optical depth equal to four. The estimated retrieval error is about 1% for the ice crystal/droplet size and 2% for the cloud optical depth. The sensitivity of the retrieved parameters to the assumed crystal shape is also assessed. New parametrizations of the optical depth and the longwave downwelling forcing for Antarctic ice and water clouds, as a function of the ice/liquid water path, are presented. The longwave downwelling flux, computed from the top of the atmosphere to the surface, ranges between 70 and 220 W/m2. The estimated cloud longwave forcing at the surface is (31 ± 7) W/m2 and (29 ± 6) W/m2 for ice clouds and (64 ± 12) and (62 ± 11) W/m2 for water clouds, in 2013 and 2014, respectively. The total average cloud forcing for the two years investigated is (46 ± 9) W/m2.


2021 ◽  
Author(s):  
Lilian Loyer ◽  
Jean-Christophe Raut ◽  
Claudia Di Biagio ◽  
Julia Maillard ◽  
Vincent Mariage ◽  
...  

Abstract. The Arctic is facing drastic climate changes that are not correctly represented by state-of-the-art models because of complex feedbacks between radiation, clouds and sea-ice surfaces. A better understanding of the surface energy budget requires radiative measurements that are limited in time and space in the High Arctic (> 80° N) and mostly obtained through specific expeditions. Six years of lidar observations onboard buoys drifting in the Arctic Ocean above 83° N have been carried out as part of the IAOOS (Ice Atmosphere arctic Ocean Operating System) project. The objective of this study is to investigate the possibility to extent the IAOOS dataset to provide estimates of the shortwave (SW) and longwave (LW) surface irradiances from lidar measurements on drifting buoys. Our approach relies on the use of the STREAMER radiative transfer model to estimate the downwelling SW scattered radiances from the background noise measured by lidar. Those radiances are then used to derive estimates of the cloud optical depths. In turn, the knowledge of the cloud optical depth enables to estimate the SW and LW (using additional IAOOS measured information) downwelling irradiances at the surface. The method was applied to the IAOOS buoy measurements in spring 2015, and retrieved cloud optical depths were compared to those derived from radiative irradiances measured during the N-ICE (Norwegian Young Sea Ice Experiment) campaign at the meteorological station, in the vicinity of the drifting buoys. Retrieved and measured SW and LW irradiances were then compared. Results showed overall good agreement. Cloud optical depths were estimated with a rather large dispersion of about 47 %. LW irradiances showed a fairly small dispersion (within 5 W m−2), with a corrigible residual bias (3 W m−2). The estimated uncertainty of the SW irradiances was 4 %. But, as for the cloud optical depth, the SW irradiances showed the occurrence of a few outliers, that may be due to a short lidar sequence acquisition time (no more than four times 10 mn per day), possibly not long enough to smooth out cloud heterogeneity. The net SW and LW irradiances are retrieved within 13 W m−2.


2008 ◽  
Vol 2 (1) ◽  
pp. 46-55 ◽  
Author(s):  
J. C. Barnard ◽  
C. N. Long ◽  
E. I. Kassianov ◽  
S. A. McFarlane ◽  
J. M. Comstock ◽  
...  

2019 ◽  
Author(s):  
Salomon Eliasson ◽  
Karl-Göran Karlsson ◽  
Ulrika Willén

Abstract. This paper describes a new satellite simulator for the Satellite Application Facility on Climate Monitoring (CM SAF) cLoud, Albedo and RAdiation dataset (CLARA), Advanced Very High Resolution Radiometer (AVHRR)-based, version 2 (CLARA-A2) Climate Data Record (CDR). This simulator takes into account the variable skill in cloud detection in the CLARA-A2 CDR by using a different approach to other similar satellite simulators to emulate the ability to detect clouds. In particular, the paper describes three methods to filter out clouds from climate models undetectable by observations. The first method, compared to the simulators in Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP), relies on one global visible cloud optical depth at 550nm (τc) threshold to delineate cloudy and cloud-free conditions. Method two and three apply long/lat -gridded values separated by day and nighttime conditions. Method two uses gridded varying τc as opposed to method one that uses just a single τc threshold, and method three uses a cloud Probability of Detection (POD) depending on the model τc. Method two and three replicate the relative ease or difficulty for cloud retrievals depending on the region and illumination by increasing the cloud sensitivity where the cloud retrievals are relatively straightforward, such as over mid-latitude oceans, and by decreasing the sensitivity where cloud retrievals are notoriously tricky, such as over the Arctic region during the polar night. Method three has the added advantage that it indirectly takes into account that cloud retrievals in some areas are more likely than others to miss some clouds. This situation is common in cold regions where even thick clouds may be inseparable from cold, snow-covered surfaces and also in areas with an abundance of broken and small scale cumulus clouds such as the atmospheric subsidence regions over the ocean. The simulator, together with the International Satellite Cloud Climatology Project (ISCCP) simulator of COSP, is used to assess Arctic clouds in the EC-Earth climate model compared to the CLARA-A2 and ISCCP-H CDRs. Compared to CLARA-A2, EC-Earth is shown to underestimate cloudiness in the Arctic generally. However, compared to ISCCP and its simulator, the opposite conclusion is reached. Previous studies have found that the CLARA-A2 CDR performs well in the Arctic during the summer months, and this paper shows that the simulated cloud mask of CLARA-A2 using method three is more representative of the CDR than method one used in COSP, using a global τc threshold to simulate clouds. Therefore, the conclusion that EC-Earth underpredicts clouds in the Arctic is the more likely one. The simulator substantially improves the simulation of the CLARA-A2 detected clouds, especially in the polar regions, by accounting for the variable cloud detection skill over the year. The approach to cloud simulation based on the POD of clouds depending on their cloud optical depth, location, and illumination is the preferred one as it reduces cloudiness over a range of cloud optical depths. Climate model comparisons with satellite-derived information can be significantly improved by this approach, mainly by reducing the risk of misinterpreting problems with satellite retrievals as cloudiness features.


Sign in / Sign up

Export Citation Format

Share Document