scholarly journals A novel post-processing algorithm for Halo Doppler lidars

Author(s):  
Ville Vakkari ◽  
Antti J. Manninen ◽  
Ewan J. O'Connor ◽  
Jan H. Schween ◽  
Pieter G. van Zyl

Abstract. Commercially available Doppler lidars have now been proven to be efficient tools for studying winds and turbulence in the planetary boundary layer. However, in many cases low signal-to-noise ratio is still a limiting factor for utilising measurements by these devices. Here, we present a novel postprocessing algorithm for Halo Streamline Doppler lidars, which enables an improvement in sensitivity of a factor of five or more. This algorithm is based on improving the accuracy of the instrumental noise floor and it enables using longer integration times or averaging of high temporal resolution data to obtain signals down to −32 dB. While this algorithm does not affect the measured radial velocity, it improves the accuracy of radial velocity uncertainty estimates and consequently the accuracy of retrieved turbulent properties. Field measurements with three different Halo Doppler lidars deployed in Finland, Greece and South Africa demonstrate how the new post-processing algorithm increases data availability for turbulent retrievals in the planetary boundary layer, improves detection of high-altitude cirrus clouds, and enables the observation of elevated aerosol layers.

2019 ◽  
Vol 12 (2) ◽  
pp. 839-852 ◽  
Author(s):  
Ville Vakkari ◽  
Antti J. Manninen ◽  
Ewan J. O'Connor ◽  
Jan H. Schween ◽  
Pieter G. van Zyl ◽  
...  

Abstract. Commercially available Doppler lidars have now been proven to be efficient tools for studying winds and turbulence in the planetary boundary layer. However, in many cases low signal-to-noise ratio is still a limiting factor for utilising measurements by these devices. Here, we present a novel post-processing algorithm for Halo Stream Line Doppler lidars, which enables an improvement in sensitivity of a factor of 5 or more. This algorithm is based on improving the accuracy of the instrumental noise floor and it enables longer integration times or averaging of high temporal resolution data to be used to obtain signals down to −32 dB. While this algorithm does not affect the measured radial velocity, it improves the accuracy of radial velocity uncertainty estimates and consequently the accuracy of retrieved turbulent properties. Field measurements using three different Halo Doppler lidars deployed in Finland, Greece and South Africa demonstrate how the new post-processing algorithm increases data availability for turbulent retrievals in the planetary boundary layer, improves detection of high-altitude cirrus clouds and enables the observation of elevated aerosol layers.


2015 ◽  
Vol 8 (10) ◽  
pp. 11139-11170
Author(s):  
A. J. Manninen ◽  
E. J. O'Connor ◽  
V. Vakkari ◽  
T. Petäjä

Abstract. Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allow turbulent properties to be obtained from studying the variation in velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Any bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. The reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.


2016 ◽  
Vol 9 (2) ◽  
pp. 817-827 ◽  
Author(s):  
Antti J. Manninen ◽  
Ewan J. O'Connor ◽  
Ville Vakkari ◽  
Tuukka Petäjä

Abstract. Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Any bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. The reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
V. S. Moreira ◽  
G. Degrazia ◽  
A. U. Timm ◽  
D. R. Roberti ◽  
S. Maldaner

The following study deals with meandering of the horizontal mean wind. The main motivation for such investigation came from the difficulty in describing contaminant dispersion in meandering conditions. Observational field measurements point out that the autocorrelation function of the horizontal wind components, obtained for the meandering cases, displays an oscillating behavior with the presence of large negative lobes. Such negative lobes are described by an equation containing functions that represent patterns of movement associated to meandering and turbulence. As a consequence, this mathematical formulation connects the turbulence and meandering phenomenon establishing the employment of hybrid parameters in models that describe the meandering dispersion. Therefore, considering this dualistic aspect between meandering and turbulence manifestations, a new set of relations for the turbulence parameterization joined with the meandering of the wind have been developed and are available. This new turbulence parameterization for a stable shear forcing planetary boundary layer, united with a meandering mean time scale is able to describe contaminant meandering enhanced spread in a low wind speed stable planetary boundary layer.


2001 ◽  
Vol 40 (18) ◽  
pp. 2985 ◽  
Author(s):  
Benoı̂t Lazzarotto ◽  
Max Frioud ◽  
Gilles Larchevêque ◽  
Valentin Mitev ◽  
Philippe Quaglia ◽  
...  

Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Evan A. Kalina ◽  
Mrinal K. Biswas ◽  
Jun A. Zhang ◽  
Kathryn M. Newman

The intensity and structure of simulated tropical cyclones (TCs) are known to be sensitive to the planetary boundary layer (PBL) parameterization in numerical weather prediction models. In this paper, we use an idealized version of the Hurricane Weather Research and Forecast system (HWRF) with constant sea-surface temperature (SST) to examine how the configuration of the PBL scheme used in the operational HWRF affects TC intensity change (including rapid intensification) and structure. The configuration changes explored in this study include disabling non-local vertical mixing, changing the coefficients in the stability functions for momentum and heat, and directly modifying the Prandtl number (Pr), which controls the ratio of momentum to heat and moisture exchange in the PBL. Relative to the control simulation, disabling non-local mixing produced a ~15% larger storm that intensified more gradually, while changing the coefficient values used in the stability functions had little effect. Varying Pr within the PBL had the greatest impact, with the largest Pr (~1.6 versus ~0.8) associated with more rapid intensification (~38 versus 29 m s−1 per day) but a 5–10 m s−1 weaker intensity after the initial period of strengthening. This seemingly paradoxical result is likely due to a decrease in the radius of maximum wind (~15 versus 20 km), but smaller enthalpy fluxes, in simulated storms with larger Pr. These results underscore the importance of measuring the vertical eddy diffusivities of momentum, heat, and moisture under high-wind, open-ocean conditions to reduce uncertainty in Pr in the TC PBL.


2021 ◽  
Vol 35 (2) ◽  
pp. 384-392
Author(s):  
Zhigang Cheng ◽  
Yubing Pan ◽  
Ju Li ◽  
Xingcan Jia ◽  
Xinyu Zhang ◽  
...  

2021 ◽  
pp. 193229682110075
Author(s):  
Rebecca A. Harvey Towers ◽  
Xiaohe Zhang ◽  
Rasoul Yousefi ◽  
Ghazaleh Esmaili ◽  
Liang Wang ◽  
...  

The algorithm for the Dexcom G6 CGM System was enhanced to retain accuracy while reducing the frequency and duration of sensor error. The new algorithm was evaluated by post-processing raw signals collected from G6 pivotal trials (NCT02880267) and by assessing the difference in data availability after a limited, real-world launch. Accuracy was comparable with the new algorithm—the overall %20/20 was 91.7% before and 91.8% after the algorithm modification; MARD was unchanged. The mean data gap due to sensor error nearly halved and total time spent in sensor error decreased by 59%. A limited field launch showed similar results, with a 43% decrease in total time spent in sensor error. Increased data availability may improve patient experience and CGM data integration into insulin delivery systems.


Sign in / Sign up

Export Citation Format

Share Document