scholarly journals An LES-based airborne Doppler lidar simulator for investigation of wind profiling in inhomogeneous flow conditions

2019 ◽  
Author(s):  
Philipp Gasch ◽  
Andreas Wieser ◽  
Julie K. Lundquist ◽  
Norbert Kalthoff

Abstract. Wind profiling by Doppler lidar is common practice and highly useful in a wide range of applications. Airborne observations can provide additional insights to ground-based systems by allowing for spatially resolved and targeted measurements. This study prepares the ground for an upcoming airborne Doppler lidar system by investigating the measurement process theoretically. To evaluate the future system characteristics and measurement accuracy, a first LES-based airborne Doppler lidar simulator (ADLS) has been developed. The accuracy of retrieved wind profiles under inhomogeneous flow conditions in the boundary layer is investigated. In general, when using reasonable system setups, wind profiling is possible with acceptable error margins. Results allow for determination of preferential system setups and wind profiling strategies. Under the conditions considered, flow inhomogeneities exert the dominant influence on wind profiling error. In comparison, both the errors caused by random radial velocity fluctuations due to laser system noise and beam pointing inaccuracy due to system vibrations are of smaller magnitude. Airborne Doppler lidar wind profiling at low wind speeds (

2020 ◽  
Vol 13 (3) ◽  
pp. 1609-1631 ◽  
Author(s):  
Philipp Gasch ◽  
Andreas Wieser ◽  
Julie K. Lundquist ◽  
Norbert Kalthoff

Abstract. Wind profiling by Doppler lidar is common practice and highly useful in a wide range of applications. Airborne Doppler lidar can provide additional insights relative to ground-based systems by allowing for spatially distributed and targeted measurements. Providing a link between theory and measurement, a first large eddy simulation (LES)-based airborne Doppler lidar simulator (ADLS) has been developed. Simulated measurements are conducted based on LES wind fields, considering the coordinate and geometric transformations applicable to real-world measurements. The ADLS provides added value as the input truth used to create the measurements is known exactly, which is nearly impossible in real-world situations. Thus, valuable insight can be gained into measurement system characteristics as well as retrieval strategies. As an example application, airborne Doppler lidar wind profiling is investigated using the ADLS. For commonly used airborne velocity azimuth display (AVAD) techniques, flow homogeneity is assumed throughout the retrieval volume, a condition which is violated in turbulent boundary layer flow. Assuming an ideal measurement system, the ADLS allows to isolate and evaluate the error in wind profiling which occurs due to the violation of the flow homogeneity assumption. Overall, the ADLS demonstrates that wind profiling is possible in turbulent wind field conditions with reasonable errors (root mean squared error of 0.36 m s−1 for wind speed when using a commonly used system setup and retrieval strategy for the conditions investigated). Nevertheless, flow inhomogeneity, e.g., due to boundary layer turbulence, can cause an important contribution to wind profiling error and is non-negligible. Results suggest that airborne Doppler lidar wind profiling at low wind speeds (<5ms-1) can be biased, if conducted in regions of inhomogeneous flow conditions.


2018 ◽  
Vol 35 (8) ◽  
pp. 1621-1631 ◽  
Author(s):  
Tomoya Shimura ◽  
Minoru Inoue ◽  
Hirofumi Tsujimoto ◽  
Kansuke Sasaki ◽  
Masato Iguchi

AbstractSmall unmanned aerial vehicles (UAVs), also known as drones, have recently become promising tools in various fields. We investigated the feasibility of wind vector profile measurement using an ultrasonic anemometer installed on a 1-m-wide hexarotor UAV. Wind vectors measured by the UAV were compared to observations by a 55-m-high meteorological tower, over a wide range of wind speed conditions up to 11 m s−1, which is a higher wind speed range than those used in previous studies. The wind speeds and directions measured by the UAV and the tower were in good agreement, with a root-mean-square error of 0.6 m s−1 and 12° for wind speed and direction, respectively. The developed method was applied to field meteorological observations near a volcano, and the wind vector profiles, along with temperature and humidity, were measured by the UAV for up to an altitude of 1000 m, which is a higher altitude range than those used in previous studies. The wind vector profile measured by the UAV was compared with Doppler lidar measurements (collected several kilometers away from the UAV measurements) and was found to be qualitatively similar to that captured by the Doppler lidar, and it adequately represented the features of the atmospheric boundary layer. The feasibility of wind profile measurement up to 1000 m by a small rotor-based UAV was clarified over a wide range of wind speed conditions.


2005 ◽  
Vol 22 (7) ◽  
pp. 1080-1094 ◽  
Author(s):  
A. Birol Kara ◽  
Harley E. Hurlburt ◽  
Alan J. Wallcraft

Abstract This study introduces exchange coefficients for wind stress (CD), latent heat flux (CL), and sensible heat flux (CS) over the global ocean. They are obtained from the state-of-the-art Coupled Ocean–Atmosphere Response Experiment (COARE) bulk algorithm (version 3.0). Using the exchange coefficients from this bulk scheme, CD, CL, and CS are then expressed as simple polynomial functions of air–sea temperature difference (Ta − Ts)—where air temperature (Ta) is at 10 m, wind speed (Va) is at 10 m, and relative humidity (RH) is at the air–sea interface—to parameterize stability. The advantage of using polynomial-based exchange coefficients is that they do not require any iterations for stability. In addition, they agree with results from the COARE algorithm but at ≈5 times lower computation cost, an advantage that is particularly needed for ocean general circulation models (OGCMs) and climate models running at high horizontal resolution and short time steps. The effects of any water vapor flux in calculating the exchange coefficients are taken into account in the polynomial functions, a feature that is especially important at low wind speeds (e.g., Va &lt; 5 m s−1) because air–sea mixing ratio difference can have a major effect on the stability, particularly in tropical regions. Analyses of exchange coefficients demonstrate the fact that water vapor can have substantial impact on air–sea exchange coefficients at low wind speeds. An example application of the exchange coefficients from the polynomial approach is the recalculation of climatological mean wind stress magnitude from 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data in the North Pacific Ocean over 1979–2002. Using ECMWF 10-m winds and the authors’ methodology provides accurate surface stresses while largely eliminating the orographically induced Gibb’s waves found in the original ERA-40 surface wind stresses. These can have a large amplitude near mountainous regions and can extend far into the ocean interior. This study introduces exchange coefficients of air–sea fluxes, which are applicable to the wide range of conditions occurring over the global ocean, including the air–sea stability differences across the Gulf Stream and Kuroshio, regions which have been the subject of many climate model studies. This versatility results because CD, CL, and CS are determined for Va values of 1 to 40 m s−1, (Ta − Ts), intervals of −8° to 7°C, and RH values of 0% to 100%. Exchange coefficients presented here are called the Naval Research Laboratory (NRL) Air–Sea Exchange Coefficients (NASEC) and they are suitable for a wide range of air–sea interaction studies and model applications.


Author(s):  
Raed Kafafy ◽  
Abdulhakeem Javeed ◽  
Moumen Idres ◽  
Sany Ihsan

Flutter-based micro generators have been successfully demonstrated to power wireless sensors. Since environmental wind speeds vary widely, flutter-based micro generators which are designed to operate within particular range of wind speeds will underperform elsewhere. At low wind speeds, magnets embedded near the ends of the belt will not move the desired distance between the coils, thereby reducing the energy conversion. A broadband flutter-based micro generator will have pick-up coils embedded on several vibrating elements with different dimensions. The coils are particularly concentrated near the point of maximum speed to maximize power output. The variation in fluttering element dimensions allows the microgenerator to generate considerable power at a wide range of wind speeds. In this work, we develop a mathematical model for the flutter-based micro generator, which addresses the wind – structure interaction, induced vibrations and electromagnetic transduction. The model primarily makes use of equations from bridge deck and thin plane analysis of flutter due to their similarities, and they are formulated to provide the velocity. This is later fed into electromagnetic transduction equations to calculate the output power. The model is useful to determine the significant design parameters of a flutter-based micro generator. The dynamic response and power output of a broadband micro generator with coils embedded on a set of cantilever films vibrating with respect to an external permanent magnetic field are calculated.


Author(s):  
W.J. de Ruijter ◽  
Peter Rez ◽  
David J. Smith

Digital computers are becoming widely recognized as standard accessories for electron microscopy. Due to instrumental innovations the emphasis in digital processing is shifting from off-line manipulation of electron micrographs to on-line image acquisition, analysis and microscope control. An on-line computer leads to better utilization of the instrument and, moreover, the flexibility of software control creates the possibility of a wide range of novel experiments, for example, based on temporal and spatially resolved acquisition of images or microdiffraction patterns. The instrumental resolution in electron microscopy is often restricted by a combination of specimen movement, radiation damage and improper microscope adjustment (where the settings of focus, objective lens stigmatism and especially beam alignment are most critical). We are investigating the possibility of proper microscope alignment based on computer induced tilt of the electron beam. Image details corresponding to specimen spacings larger than ∼20Å are produced mainly through amplitude contrast; an analysis based on geometric optics indicates that beam tilt causes a simple image displacement. Higher resolution detail is characterized by wave propagation through the optical system of the microscope and we find that beam tilt results in a dispersive image displacement, i.e. the displacement varies with spacing. This approach is valid for weak phase objects (such as amorphous thin films), where transfer is simply described by a linear filter (phase contrast transfer function) and for crystalline materials, where imaging is described in terms of dynamical scattering and non-linear imaging theory. In both cases beam tilt introduces image artefacts.


2020 ◽  
Vol 37 ◽  
pp. 63-71
Author(s):  
Yui-Chuin Shiah ◽  
Chia Hsiang Chang ◽  
Yu-Jen Chen ◽  
Ankam Vinod Kumar Reddy

ABSTRACT Generally, the environmental wind speeds in urban areas are relatively low due to clustered buildings. At low wind speeds, an aerodynamic stall occurs near the blade roots of a horizontal axis wind turbine (HAWT), leading to decay of the power coefficient. The research targets to design canards with optimal parameters for a small-scale HAWT system operated at variable rotational speeds. The design was to enhance the performance by delaying the aerodynamic stall near blade roots of the HAWT to be operated at low wind speeds. For the optimal design of canards, flow fields of the sample blades with and without canards were both simulated and compared with the experimental data. With the verification of our simulations, Taguchi analyses were performed to seek the optimum parameters of canards. This study revealed that the peak performance of the optimized canard system operated at 540 rpm might be improved by ∼35%.


Sign in / Sign up

Export Citation Format

Share Document