Stability-Dependent Exchange Coefficients for Air–Sea Fluxes*

2005 ◽  
Vol 22 (7) ◽  
pp. 1080-1094 ◽  
Author(s):  
A. Birol Kara ◽  
Harley E. Hurlburt ◽  
Alan J. Wallcraft

Abstract This study introduces exchange coefficients for wind stress (CD), latent heat flux (CL), and sensible heat flux (CS) over the global ocean. They are obtained from the state-of-the-art Coupled Ocean–Atmosphere Response Experiment (COARE) bulk algorithm (version 3.0). Using the exchange coefficients from this bulk scheme, CD, CL, and CS are then expressed as simple polynomial functions of air–sea temperature difference (Ta − Ts)—where air temperature (Ta) is at 10 m, wind speed (Va) is at 10 m, and relative humidity (RH) is at the air–sea interface—to parameterize stability. The advantage of using polynomial-based exchange coefficients is that they do not require any iterations for stability. In addition, they agree with results from the COARE algorithm but at ≈5 times lower computation cost, an advantage that is particularly needed for ocean general circulation models (OGCMs) and climate models running at high horizontal resolution and short time steps. The effects of any water vapor flux in calculating the exchange coefficients are taken into account in the polynomial functions, a feature that is especially important at low wind speeds (e.g., Va < 5 m s−1) because air–sea mixing ratio difference can have a major effect on the stability, particularly in tropical regions. Analyses of exchange coefficients demonstrate the fact that water vapor can have substantial impact on air–sea exchange coefficients at low wind speeds. An example application of the exchange coefficients from the polynomial approach is the recalculation of climatological mean wind stress magnitude from 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data in the North Pacific Ocean over 1979–2002. Using ECMWF 10-m winds and the authors’ methodology provides accurate surface stresses while largely eliminating the orographically induced Gibb’s waves found in the original ERA-40 surface wind stresses. These can have a large amplitude near mountainous regions and can extend far into the ocean interior. This study introduces exchange coefficients of air–sea fluxes, which are applicable to the wide range of conditions occurring over the global ocean, including the air–sea stability differences across the Gulf Stream and Kuroshio, regions which have been the subject of many climate model studies. This versatility results because CD, CL, and CS are determined for Va values of 1 to 40 m s−1, (Ta − Ts), intervals of −8° to 7°C, and RH values of 0% to 100%. Exchange coefficients presented here are called the Naval Research Laboratory (NRL) Air–Sea Exchange Coefficients (NASEC) and they are suitable for a wide range of air–sea interaction studies and model applications.

2006 ◽  
Vol 19 (15) ◽  
pp. 3751-3767 ◽  
Author(s):  
Véronique Bugnion ◽  
Chris Hill ◽  
Peter H. Stone

Abstract Multicentury sensitivities in a realistic geometry global ocean general circulation model are analyzed using an adjoint technique. This paper takes advantage of the adjoint model’s ability to generate maps of the sensitivity of a diagnostic (i.e., the meridional overturning’s strength) to all model parameters. This property of adjoints is used to review several theories, which have been elaborated to explain the strength of the North Atlantic’s meridional overturning. This paper demonstrates the profound impact of boundary conditions in permitting or suppressing mechanisms within a realistic model of the contemporary ocean circulation. For example, the so-called Drake Passage Effect in which wind stress in the Southern Ocean acts as the main driver of the overturning’s strength, is shown to be an artifact of boundary conditions that restore the ocean’s surface temperature and salinity toward prescribed climatologies. Advective transports from the Indian and Pacific basins play an important role in setting the strength of the overturning circulation under “mixed” boundary conditions, in which a flux of freshwater is specified at the ocean’s surface. The most “realistic” regime couples an atmospheric energy and moisture balance model to the ocean. In this configuration, inspection of the global maps of sensitivity to wind stress and diapycnal mixing suggests a significant role for near-surface Ekman processes in the Tropics. Buoyancy also plays an important role in setting the overturning’s strength, through direct thermal forcing near the sites of convection, or through the advection of salinity anomalies in the Atlantic basin.


2008 ◽  
Vol 38 (9) ◽  
pp. 2038-2055 ◽  
Author(s):  
Guillemette Caulliez ◽  
Vladimir Makin ◽  
Vladimir Kudryavtsev

Abstract The specific properties of the turbulent wind stress and the related wind wave field are investigated in a dedicated laboratory experiment for a wide range of wind speeds and fetches, and the results are analyzed using the wind-over-waves coupling model. Compared to long-fetch ocean wave fields, wind wave fields observed at very short fetches are characterized by higher significant dominant wave steepness but a much smaller macroscale wave breaking rate. The surface drag dependence on fetch and wind then closely follows the dominant wave steepness dependence. It is found that the dimensionless roughness length z*0 varies not only with wind forcing (or inverse wave age) but also with fetch. At a fixed fetch, when gravity waves develop, z*0 decreases with wind forcing according to a −1/2 power law. Taking into account the peculiarities of laboratory wave fields, the WOWC model predicts the measured wind stress values rather well. The relative contributions to surface drag of the equilibrium-range wave-induced stress and the airflow separation stress due to wave breaking remain small, even at high wind speeds. At moderate to strong winds, the form drag resulting from dominant waves represents the major wind stress component.


2017 ◽  
Vol 30 (23) ◽  
pp. 9511-9525 ◽  
Author(s):  
Yang Wu ◽  
Xiaoming Zhai ◽  
Zhaomin Wang

The decadal-mean impact of including ocean surface currents in the bulk formulas on surface air–sea fluxes and the ocean general circulation is investigated for the first time using a global eddy-permitting coupled ocean–sea ice model. Although including ocean surface currents in air–sea flux calculations only weakens the surface wind stress by a few percent, it significantly reduces wind power input to both geostrophic and ageostrophic motions, and damps the eddy and mean kinetic energy throughout the water column. Furthermore, the strength of the horizontal gyre circulations and the Atlantic meridional overturning circulation are found to decrease considerably (by 10%–15% and ~13%, respectively). As a result of the weakened ocean general circulation, the maximum northward global ocean heat transport decreases by about 0.2 PW, resulting in a lower sea surface temperature and reduced surface heat loss in the northern North Atlantic. Additional sensitivity model experiments further demonstrate that it is including ocean surface currents in the wind stress calculation that dominates this decadal impact, with including ocean surface currents in the turbulent heat flux calculations making only a minor contribution. These results highlight the importance of properly accounting for ocean surface currents in surface air–sea fluxes in modeling the ocean circulation and climate.


2007 ◽  
Vol 20 (10) ◽  
pp. 2273-2298 ◽  
Author(s):  
Hilary Spencer ◽  
Rowan Sutton ◽  
Julia M. Slingo

Abstract Here the factors affecting the mean state and El Niño variability in the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) are examined with and without heat flux or wind stress corrections. There is currently little confidence in the prediction of El Niño for seasonal forecasts or climate change due to the inaccuracies in coupled models. If heat flux or wind stress corrections could reduce these biases then forecasts might be improved. Heat flux corrections have unexpected effects on both the mean state and variability of HadCM3. HadCM3 is found to be very sensitive to the corrections imposed. If heat flux corrections are imposed Tropics wide then easterlies in the eastern equatorial Pacific are increased leading to localized steep east–west gradients in the thermocline or “thermocline jumps,” which appear to suppress propagation of heat from the west to the east and hence suppress strong El Niños so that ENSO variability is weak. In contrast, if heat flux corrections are imposed only within 10° of the equator, an atmospheric teleconnection from the cold subtropical SST biases intensifies the ITCZ and weakens the equatorial easterlies. As a result, the thermocline jumps are flattened and strong El Niños occur very frequently. Neither heat flux correction procedure improves the representation of El Niño. Wind stress corrections alone have a small impact on the coupled model. Some of the SST warm biases are reduced, but the variability is not altered significantly.


2021 ◽  
Author(s):  
Sheng Chen

<p>Despite many investigations/studies on the surface wave-induced stress, the global feature of the wave-induced stress has not been obtained previously as that requires a simultaneous observation of wave spectra and wind on a global scale. The China France Oceanography Satellite (CFOSAT) provided an opportunity for the first time to evaluate the global wave-induced stress and its contribution to the total wind stress. In this study, the global spatial distributions of wave-induced stress and its correlated index for August to November in 2019 are presented using the simultaneous ocean surface winds and wave spectra from the CFOSAT. The main results show that the wave-induced stress is fundamentally dependent on the wind and wave fields on a global scale and shows significant temporal and spatial variations. Further analyses indicate that there is an upward momentum flux under strong swells and low wind speeds (below approximately 5 m/s), and an anti-correlation between the dimensionless wave-induced stress and the proportion of swell energy to the total. Finally, the variations of the surface wave induced wind stress are clear asymmetric between northern and southern hemispheres in late summer but symmetric in late fall, which are closely associated with the seasonal changes in large-scale atmospheric circulation.</p>


Author(s):  
Raed Kafafy ◽  
Abdulhakeem Javeed ◽  
Moumen Idres ◽  
Sany Ihsan

Flutter-based micro generators have been successfully demonstrated to power wireless sensors. Since environmental wind speeds vary widely, flutter-based micro generators which are designed to operate within particular range of wind speeds will underperform elsewhere. At low wind speeds, magnets embedded near the ends of the belt will not move the desired distance between the coils, thereby reducing the energy conversion. A broadband flutter-based micro generator will have pick-up coils embedded on several vibrating elements with different dimensions. The coils are particularly concentrated near the point of maximum speed to maximize power output. The variation in fluttering element dimensions allows the microgenerator to generate considerable power at a wide range of wind speeds. In this work, we develop a mathematical model for the flutter-based micro generator, which addresses the wind – structure interaction, induced vibrations and electromagnetic transduction. The model primarily makes use of equations from bridge deck and thin plane analysis of flutter due to their similarities, and they are formulated to provide the velocity. This is later fed into electromagnetic transduction equations to calculate the output power. The model is useful to determine the significant design parameters of a flutter-based micro generator. The dynamic response and power output of a broadband micro generator with coils embedded on a set of cantilever films vibrating with respect to an external permanent magnetic field are calculated.


2013 ◽  
Vol 43 (1) ◽  
pp. 176-186 ◽  
Author(s):  
Magnus Hieronymus ◽  
Jonas Nycander

Abstract The nonlinear equation of state of seawater introduces a sink or source of buoyancy when water parcels of unequal salinities and temperatures are mixed. This article contains quantitative estimates of these nonlinear effects on the buoyancy budget of the global ocean. It is shown that the interior buoyancy sink can be determined from surface buoyancy fluxes. These surface buoyancy fluxes are calculated using two surface heat flux climatologies, one based on in situ measurements and the other on a reanalysis, in both cases using a nonlinear equation of state. It is also found that the buoyancy budget in the ocean general circulation model Nucleus for European Modeling of the Ocean (NEMO) is in good agreement with the buoyancy budgets based on the heat flux climatologies. Moreover, an examination of the vertically resolved buoyancy budget in NEMO shows that in large parts of the ocean the nonlinear buoyancy sink gives the largest contribution to this budget.


2021 ◽  
Vol 14 (6) ◽  
pp. 3697-3714
Author(s):  
Moritz Kreuzer ◽  
Ronja Reese ◽  
Willem Nicholas Huiskamp ◽  
Stefan Petri ◽  
Torsten Albrecht ◽  
...  

Abstract. The past and future evolution of the Antarctic Ice Sheet is largely controlled by interactions between the ocean and floating ice shelves. To investigate these interactions, coupled ocean and ice sheet model configurations are required. Previous modelling studies have mostly relied on high-resolution configurations, limiting these studies to individual glaciers or regions over short timescales of decades to a few centuries. We present a framework to couple the dynamic ice sheet model PISM (Parallel Ice Sheet Model) with the global ocean general circulation model MOM5 (Modular Ocean Model) via the ice shelf cavity model PICO (Potsdam Ice-shelf Cavity mOdel). As ice shelf cavities are not resolved by MOM5 but are parameterized with the PICO box model, the framework allows the ice sheet and ocean components to be run at resolutions of 16 km and 3∘ respectively. This approach makes the coupled configuration a useful tool for the analysis of interactions between the Antarctic Ice Sheet and the global ocean over time spans of the order of centuries to millennia. In this study, we describe the technical implementation of this coupling framework: sub-shelf melting in the ice sheet component is calculated by PICO from modelled ocean temperatures and salinities at the depth of the continental shelf, and, vice versa, the resulting mass and energy fluxes from melting at the ice–ocean interface are transferred to the ocean component. Mass and energy fluxes are shown to be conserved to machine precision across the considered component domains. The implementation is computationally efficient as it introduces only minimal overhead. Furthermore, the coupled model is evaluated in a 4000 year simulation under constant present-day climate forcing and is found to be stable with respect to the ocean and ice sheet spin-up states. The framework deals with heterogeneous spatial grid geometries, varying grid resolutions, and timescales between the ice and ocean component in a generic way; thus, it can be adopted to a wide range of model set-ups.


2019 ◽  
Author(s):  
Philipp Gasch ◽  
Andreas Wieser ◽  
Julie K. Lundquist ◽  
Norbert Kalthoff

Abstract. Wind profiling by Doppler lidar is common practice and highly useful in a wide range of applications. Airborne observations can provide additional insights to ground-based systems by allowing for spatially resolved and targeted measurements. This study prepares the ground for an upcoming airborne Doppler lidar system by investigating the measurement process theoretically. To evaluate the future system characteristics and measurement accuracy, a first LES-based airborne Doppler lidar simulator (ADLS) has been developed. The accuracy of retrieved wind profiles under inhomogeneous flow conditions in the boundary layer is investigated. In general, when using reasonable system setups, wind profiling is possible with acceptable error margins. Results allow for determination of preferential system setups and wind profiling strategies. Under the conditions considered, flow inhomogeneities exert the dominant influence on wind profiling error. In comparison, both the errors caused by random radial velocity fluctuations due to laser system noise and beam pointing inaccuracy due to system vibrations are of smaller magnitude. Airborne Doppler lidar wind profiling at low wind speeds (


Sign in / Sign up

Export Citation Format

Share Document