scholarly journals Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003-2018) for carbon and climate applications

2019 ◽  
Author(s):  
Maximilian Reuter ◽  
Michael Buchwitz ◽  
Oliver Schneising ◽  
Stefan Noel ◽  
Heinrich Bovensmann ◽  
...  

Abstract. Satellite retrievals of column-averaged dry-air mole fractions of carbon dioxide (CO2) and methane (CH4), denoted XCO2 and XCH4, respectively, have been used in recent years to obtain information on natural and anthropogenic sources and sinks and for other applications such as comparisons with climate models. Here we present new data sets based on merging several individual satellite data products in order to generate consistent long-term Climate Data Records (CDRs) of these two Essential Climate Variables (ECVs). These ECV CDRs, which cover the time period 2003-2018, have been generated using an ensemble of data products from the satellite sensors SCIAMACHY/ENVISAT, TANSO-FTS/GOSAT and (for XCO2) for the first time also including data from the Orbiting Carbon Observatory-2 (OCO-2) satellite. Two types of products have been generated: (i) Level 2 (L2) products generated with the latest version of the “ensemble median algorithm” (EMMA) and (ii) Level 3 (L3) products obtained by gridding the corresponding L2 EMMA products to obtain a monthly 5ox5o data product in Obs4MIPs (Observations for Model Intercomparisons Project) format. The L2 products consists of daily NetCDF (Network Common Data Form) files, which contain in addition to the main parameters, i.e., XCO2 or XCH4, corresponding uncertainty estimates for random and potential systematic uncertainties and the averaging kernel for each single (quality-filtered) satellite observation. We describe the algorithms used to generate these data products and present quality assessment results based on comparisons with Total Carbon Column Observing Network (TCCON) ground-based retrievals. We found that the XCO2 Level 2 data set at the TCCON validation sites can be characterized by the following figures of merit (the corresponding values for the Level 3 product are listed in brackets): single observation random error (1-sigma): 1.29 ppm (monthly: 1.18 ppm); global bias: 0.20 ppm (0.18 ppm), spatio-temporal bias or “relative accuracy” (1-sigma): 0.66 ppm (0.70 ppm). The corresponding values for the XCH4 products are: single observation random error (1-sigma): 17.4 ppb (monthly: 8.7 ppb); global bias: −2.0 ppb (−2.9 ppb), spatio-temporal bias (1-sigma): 5.0 ppb (4.9 ppb). It has also been found that the data products exhibit very good long-term stability as no significant long-term bias trend has been identified. The new data sets have also been used to derive annual XCO2 and XCH4 growth rates, which are in reasonable to good agreement with growth rates from the National Oceanic and Atmospheric Administration (NOAA) based on marine surface observations. The presented ECV data sets are available (from December 2019 onwards) via the Climate Data Store (CDS, https://cds.climate.copernicus.eu/) of the Copernicus Climate Change Service (C3S, https://climate.copernicus.eu/).

2020 ◽  
Vol 13 (2) ◽  
pp. 789-819 ◽  
Author(s):  
Maximilian Reuter ◽  
Michael Buchwitz ◽  
Oliver Schneising ◽  
Stefan Noël ◽  
Heinrich Bovensmann ◽  
...  

Abstract. Satellite retrievals of column-averaged dry-air mole fractions of carbon dioxide (CO2) and methane (CH4), denoted XCO2 and XCH4, respectively, have been used in recent years to obtain information on natural and anthropogenic sources and sinks and for other applications such as comparisons with climate models. Here we present new data sets based on merging several individual satellite data products in order to generate consistent long-term climate data records (CDRs) of these two Essential Climate Variables (ECVs). These ECV CDRs, which cover the time period 2003–2018, have been generated using an ensemble of data products from the satellite sensors SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT and (for XCO2) for the first time also including data from the Orbiting Carbon Observatory 2 (OCO-2) satellite. Two types of products have been generated: (i) Level 2 (L2) products generated with the latest version of the ensemble median algorithm (EMMA) and (ii) Level 3 (L3) products obtained by gridding the corresponding L2 EMMA products to obtain a monthly 5∘×5∘ data product in Obs4MIPs (Observations for Model Intercomparisons Project) format. The L2 products consist of daily NetCDF (Network Common Data Form) files, which contain in addition to the main parameters, i.e., XCO2 or XCH4, corresponding uncertainty estimates for random and potential systematic uncertainties and the averaging kernel for each single (quality-filtered) satellite observation. We describe the algorithms used to generate these data products and present quality assessment results based on comparisons with Total Carbon Column Observing Network (TCCON) ground-based retrievals. We found that the XCO2 Level 2 data set at the TCCON validation sites can be characterized by the following figures of merit (the corresponding values for the Level 3 product are listed in brackets) – single-observation random error (1σ): 1.29 ppm (monthly: 1.18 ppm); global bias: 0.20 ppm (0.18 ppm); and spatiotemporal bias or relative accuracy (1σ): 0.66 ppm (0.70 ppm). The corresponding values for the XCH4 products are single-observation random error (1σ): 17.4 ppb (monthly: 8.7 ppb); global bias: −2.0 ppb (−2.9 ppb); and spatiotemporal bias (1σ): 5.0 ppb (4.9 ppb). It has also been found that the data products exhibit very good long-term stability as no significant long-term bias trend has been identified. The new data sets have also been used to derive annual XCO2 and XCH4 growth rates, which are in reasonable to good agreement with growth rates from the National Oceanic and Atmospheric Administration (NOAA) based on marine surface observations. The presented ECV data sets are available (from early 2020 onwards) via the Climate Data Store (CDS, https://cds.climate.copernicus.eu/, last access: 10 January 2020) of the Copernicus Climate Change Service (C3S, https://climate.copernicus.eu/, last access: 10 January 2020).


2018 ◽  
Vol 11 (3) ◽  
pp. 1385-1402 ◽  
Author(s):  
Katerina Garane ◽  
Christophe Lerot ◽  
Melanie Coldewey-Egbers ◽  
Tijl Verhoelst ◽  
Maria Elissavet Koukouli ◽  
...  

Abstract. The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting) v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate–chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC) at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°), whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between −0.2 ± 0.9 % (for GOME-2B) and 1.0 ± 1.4 % (for SCIAMACHY). Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between −0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ∼ 1 % for GOME and OMI to  ∼ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a negligible drift per decade of the differences in the Northern Hemisphere of −0.11 ± 0.10 % decade−1 for Dobson and +0.22 ± 0.08 % decade−1 for Brewer collocations. The exceptional quality of the level-3 GTO-ECV v3 TOC record temporal stability satisfies well the requirements for the total ozone measurement decadal stability of 1–3 % and the short-term and long-term accuracy requirements of 2 and 3 %, respectively, showing a remarkable inter-sensor consistency, both in the level-2 GODFIT v4 and in the level-3 GTO-ECV v3 datasets, and thus can be used for longer-term analysis of the ozone layer, such as decadal trend studies, chemistry–climate model evaluation and data assimilation applications.


2017 ◽  
Author(s):  
Katerina Garane ◽  
Christophe Lerot ◽  
Melanie Coldewey-Egbers ◽  
Tijl Verhoelst ◽  
Irene Zyrichidou ◽  
...  

Abstract. The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a Level-3 data record, which combines individual sensor products into one single cohesive record covering the 22 year period from 1995 to 2017, generated in the frame of the European Space Agency's Climate Change Initiative Phase-II. It is based on Level-2 total ozone data produced by the GODFIT v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/MetopA and /MetopB observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate-chemistry modelling community for decadal stability, long-term and short term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC), both at Level-2 and Level-3. The individual Level-2 data sets show excellent inter-sensor consistency with mean differences generally within 0.5 % at moderate latitudes (±50°), whereas the Level-3 data sets show mean differences with respect to the OMI reference data record that span between −0.2 ± 0.9 % (for GOME-2B) and 1.0 ± 1.4&htinsp;% (for SCIAMACHY). Very similar findings are reported for the Level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments; the mean bias between GODFIT v4 satellite TOC and ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between −0.5 % to 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges between ~ 1 % for GOME and OMI, to ~ 2 % for SCIAMACHY. For the Level-3 validation, as a first step the aim was to show that the Level-3 CRDP produces consistent findings as the Level-2 individual sensor comparisons. We show an excellent agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a negligible drift per decade in the Northern Hemisphere differences at −0.11 ± 0.10 % per decade for Dobson and +0.22 ± 0.08 % per decade for Brewer collocations. The exceptional quality of the Level-3 GTO-ECV v3 TOC record temporal stability well satisfies the requirements for the total ozone measurement decadal stability of between 1–3 % and the short term and long-term accuracy requirements of 2 % and 3 % respectively, showing an excellent inter-sensor consistency both in the Level-2 GODFIT v4 as well as in the Level-3 GTO-ECV v3 datasets and thus can be used for longer term analysis of the ozone layer, such as decadal trend studies, chemistry-climate model evaluation and data assimilation applications.


2020 ◽  
Vol 287 (1928) ◽  
pp. 20200538
Author(s):  
Warren S. D. Tennant ◽  
Mike J. Tildesley ◽  
Simon E. F. Spencer ◽  
Matt J. Keeling

Plague, caused by Yersinia pestis infection, continues to threaten low- and middle-income countries throughout the world. The complex interactions between rodents and fleas with their respective environments challenge our understanding of human plague epidemiology. Historical long-term datasets of reported plague cases offer a unique opportunity to elucidate the effects of climate on plague outbreaks in detail. Here, we analyse monthly plague deaths and climate data from 25 provinces in British India from 1898 to 1949 to generate insights into the influence of temperature, rainfall and humidity on the occurrence, severity and timing of plague outbreaks. We find that moderate relative humidity levels of between 60% and 80% were strongly associated with outbreaks. Using wavelet analysis, we determine that the nationwide spread of plague was driven by changes in humidity, where, on average, a one-month delay in the onset of rising humidity translated into a one-month delay in the timing of plague outbreaks. This work can inform modern spatio-temporal predictive models for the disease and aid in the development of early-warning strategies for the deployment of prophylactic treatments and other control measures.


2020 ◽  
Author(s):  
Irina Solodovnik ◽  
Diana Stein ◽  
Jan Fokke Meirink ◽  
Karl-Göran Karlsson ◽  
Martin Stengel

<p>Global data records of cloud properties are an important part for the analysis of the Earth's climate system and its variability. One of the few sources facilitating such records are the measurements of the satellite-based Advanced Very High Resolution Radiometer (AVHRR) sensor that provides spatially homogeneous and high resolved information in multiple spectral bands. This information can be used to retrieve global cloud properties covering multiple decades, as, for example, composed as part of the CM SAF Cloud, Albedo, Radiation data record based on AVHRR (CLARA) series.</p><p>In this presentation we introduce the edition 2.1 (CLARA-A2.1) of this record series, which is the temporally extended version of CLARA-A2. This extension includes three and a half more years at the end of the data record, which now covers the time period January 1982 to June 2019 (37.5 years). CLARA-A2.1 includes a comprehensive set of cloud parameters: fractional cloud cover, cloud top products, cloud thermodynamic phase and cloud physical properties, such as cloud optical thickness, particle effective radius and cloud water path. Cloud products are available as daily and monthly averages and histograms (Level 3) on a regular 0.25°×0.25° global grid and as daily, global composite products (Level 2b) with a spatial resolution of 0.05°×0.05°. Time series analyses of the CLARA-A2.1 cloud products show the homogeneity and stability of the extension.</p><p>In addition to the general characteristics of the CLARA-A2.1 record, we will summarize the results of the thorough evaluation efforts that were conducted by validation against reference observations (e.g. SYNOP, DARDAR, CALIOP) and by comparisons to similar well established data records (e.g. Patmos-X, ISCCP-H and MODIS C6.1). CLARA-A2.1 cloud products show generally a very good agreement with all the compared data sets and fulfil CM SAF's accuracy, precision and decadal stability requirements. As an additional aspect, we will touch upon the CLARA Interim Climate Data Record (ICDR) concept that will soon be used for extending CLARA-A2.1 in near-real-time mode.</p>


2000 ◽  
Vol 27 (2) ◽  
pp. 159-178 ◽  
Author(s):  
J.A. GARCÍA CHARTON ◽  
I.D. WILLIAMS ◽  
A. PÉREZ RUZAFA ◽  
M. MILAZZO ◽  
R. CHEMELLO ◽  
...  

The capability to detect and predict the responses of marine populations and communities to the establishment of marine protected areas (MPAs) depends on the ability to distinguish between the influences of management and natural variability due to the effects of factors other than protection. Thus, it is important to understand and quantify the magnitude and range of this natural variability at each scale of observation. Here we review the scale of responses of target populations and communities to protection within Mediterranean MPAs, against their ‘normal’ spatio-temporal heterogeneity, and compare those with documented cases from other temperate and tropical marine ecosystems. Additionally, we approach the problem of the relative importance of habitat structure, considered as a set of biological and physical elements of the seascape hierarchically arranged in space at multiple scales, to drive natural variability. We conclude that much more effort has to be made to characterize heterogeneity in relation to Mediterranean MPAs, and to quantify and explain relationships between target species and their habitats as sources of such variability. These studies should be based on sound sampling designs, which (1) generate long-term data sets, and would ideally (2) be based on a Mediterranean-wide comparison of a number of protected and unprotected localities, (3) be designed from a multi-scaled perspective, and (4) control for factors other than protection, in order to avoid their confounding effects. The need for appropriate spatial and temporal replication, nested designs and power analysis is advocated.


2020 ◽  
Author(s):  
Giulia Panegrossi ◽  
Paolo Sanò ◽  
Leonardo Bagaglini ◽  
Daniele Casella ◽  
Elsa Cattani ◽  
...  

<p>Within the Copernicus Climate Change Service (C3S), the Climate Data Store (CDS) built by ECMWF will provide open and free access to global and regional products of Essential Climate Variables (ECV) based on satellite observations spanning several decades, amongst other things. Given its significance in the Earth system and particularly for human life, the ECV precipitation will be of major interest for users of the CDS.</p><p>C3S strives to include as many established, high-quality data sets as possible in the CDS. However, it also intends to offer new products dedicated for first-hand publication in the CDS. One of these products is a climate data record based on merging satellite observations of daily and monthly precipitation by both passive microwave (MW) sounders (AMSU-B/MHS) and imagers (SSMI/SSMIS) on a 1°x1° spatial grid in order to improve spatiotemporal satellite coverage of the globe.</p><p>The MW sounder observations will be obtained using, as input data, the FIDUCEO Fundamental Climate data Record (FCDR) for AMSU-B/MHS in a new global algorithm developed specifically for the project based on the Passive microwave Neural network Precipitation Retrieval approach (PNPR; Sanò et al., 2015), adapted for climate applications (PNPR-CLIM). The algorithm consists of two Artificial Neural Network-based modules, one for precipitation detection, and one for precipitation rate estimate, trained on a global observational database built from Global Precipitation Measurement-Core Observatory (GPM-CO) measurements. The MW imager observations by SSM/I and SSMIS will be adopted from the Hamburg Ocean Atmosphere Fluxes and Parameters from Satellite data (HOAPS; Andersson et al., 2017), based on the CM SAF SSM/I and SSMIS FCDR (Fennig et al., 2017). The Level 2 precipitation rate estimates from MW sounders and imagers are combined through a newly developed merging module to obtain Level 3 daily and monthly precipitation and generate the 18-year precipitation CDR (2000-2017).</p><p>Here, we present the status of the Level 2 product’s development. We carry out a Level-2 comparison and present first results of the merged Level-3 precipitation fields. Based on this, we assess the product’s expected plausibility, coverage, and the added value of merging the MW sounder and imager observations.</p><p><strong>References</strong></p><p>Anderssonet al., 2017, DOI:10.5676/EUM_SAF_CM/HOAPS/V002</p><p>Fennig, et al., 2017, DOI:10.5676/EUM_SAF_CM/FCDR_MWI/V003</p><p>Sanò, P., et al., 2015, DOI: 10.5194/amt-8-837-2015</p>


2020 ◽  
Author(s):  
Wouter Dorigo ◽  
Wolfgang Preimesberger ◽  
Adam Pasik ◽  
Alexander Gruber ◽  
Leander Moesinger ◽  
...  

<p>As part of the European Space Agency (ESA) Climate Change Initiative (CCI) a more than 40 year long climate data record (CDR) is produced by systematically combining Level-2 datasets from separate missions. Combining multiple level 2 datasets into a single consistent long-term product combines the advantages of individual missions and allows deriving a harmonised long-term record with optimal spatial and temporal coverage. The current version of ESA CCI Soil Moisture includes a PASSIVE (radiometer-based) dataset covering the period 1978 to 2019, an ACTIVE (scatterometer-based) product covering the period 1991-2019 and a COMBINED product (1978-2019). </p><p>The European Commission’s Copernicus Climate Changes Service (C3S) uses the ESA CCI soil moisture algorithm to produce similar climate data records from near-real-time Level-2 data streams.  These products are continuously extended within 10 days after data acquisition and instantaneously made available through the C3S Climate Data Store. In addition to a daily product, monthly aggregates as well as a dekadal (10-days) products are produced.</p><p>In this presentation we give an overview of the latest developments of the ESA CCI and C3S Soil Moisture datasets, which include the integration of SMAP and various algorithmic updates, and use the datasets to assess the hydrological conditions of 2019 with respect to a 30-year historical baseline.</p><p>The development of the ESA CCI products has been supported by ESA’s Climate Change Initiative for Soil Moisture (Contract No. 4000104814/11/I-NB and 4000112226/14/I-NB). The Copernicus Climate Change Service (C3S) soil moisture product is funded by the Copernicus Climate Change Service implemented by ECMWF through C3S 312b Lot 7 Soil Moisture service.</p>


2017 ◽  
Vol 17 (24) ◽  
pp. 15069-15093 ◽  
Author(s):  
Elizabeth C. Weatherhead ◽  
Jerald Harder ◽  
Eduardo A. Araujo-Pradere ◽  
Greg Bodeker ◽  
Jason M. English ◽  
...  

Abstract. Sensors on satellites provide unprecedented understanding of the Earth's climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellite missions. This paper addresses how the length of overlap affects the ability to identify an offset or a drift in the overlap of data between two sensors. Ozone and temperature data sets are used as examples showing that overlap data can differ by latitude and can change over time. New results are presented for the general case of sensor overlap by using Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments' measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 % yr−1 uncertainty (0.00008 W m−2 nm−1 yr−1), the overlap for these two satellites would need to be 2.5 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps occur adding uncertainty to both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged data set. Results presented here are directly applicable to satellite Earth observations. Approaches for Earth observations offer additional challenges due to the complexity of the observations, but Earth observations may also benefit from ancillary observations taken from ground-based and in situ sources. Difficult choices need to be made when monitoring approaches are considered; we outline some attempts at optimizing networks based on economic principles. The careful evaluation of monitoring overlap is important to the appropriate application of observational resources and to the usefulness of current and future observations.


2019 ◽  
Vol 11 (8) ◽  
pp. 986 ◽  
Author(s):  
Joanne Nightingale ◽  
Jonathan P.D. Mittaz ◽  
Sarah Douglas ◽  
Dick Dee ◽  
James Ryder ◽  
...  

Decision makers need accessible robust evidence to introduce new policies to mitigate and adapt to climate change. There is an increasing amount of environmental information available to policy makers concerning observations and trends relating to the climate. However, this data is hosted across a multitude of websites often with inconsistent metadata and sparse information relating to the quality, accuracy and validity of the data. Subsequently, the task of comparing datasets to decide which is the most appropriate for a certain purpose is very complex and often infeasible. In support of the European Union’s Copernicus Climate Change Service (C3S) mission to provide authoritative information about the past, present and future climate in Europe and the rest of the world, each dataset to be provided through this service must undergo an evaluation of its climate relevance and scientific quality to help with data comparisons. This paper presents the framework for Evaluation and Quality Control (EQC) of climate data products derived from satellite and in situ observations to be catalogued within the C3S Climate Data Store (CDS). The EQC framework will be implemented by C3S as part of their operational quality assurance programme. It builds on past and present international investment in Quality Assurance for Earth Observation initiatives, extensive user requirements gathering exercises, as well as a broad evaluation of over 250 data products and a more in-depth evaluation of a selection of 24 individual data products derived from satellite and in situ observations across the land, ocean and atmosphere Essential Climate Variable (ECV) domains. A prototype Content Management System (CMS) to facilitate the process of collating, evaluating and presenting the quality aspects and status of each data product to data users is also described. The development of the EQC framework has highlighted cross-domain as well as ECV specific science knowledge gaps in relation to addressing the quality of climate data sets derived from satellite and in situ observations. We discuss 10 common priority science knowledge gaps that will require further research investment to ensure all quality aspects of climate data sets can be ascertained and provide users with the range of information necessary to confidently select relevant products for their specific application.


Sign in / Sign up

Export Citation Format

Share Document