scholarly journals Long-term column-averaged greenhouse gas observations using a COCCON spectrometer at the high surface albedo site Gobabeb, Namibia

2021 ◽  
Author(s):  
Matthias M. Frey ◽  
Frank Hase ◽  
Thomas Blumenstock ◽  
Darko Dubravica ◽  
Jochen Groß ◽  
...  

Abstract. In this study we present column-averaged dry-air mole fractions of CO2 (XCO2), CH4 (XCH4) and CO (XCO) from a recently established measurement site in Gobabeb, Namibia. Gobabeb is a hyperarid desert site at the sharp transition zone between the sand desert and the gravel plains, offering unique characteristics with respect to surface albedo properties. Measurements started January 2015 and are performed utilizing a ground-based Fourier transform infrared (FTIR) EM27/SUN spectrometer of the COllaborative Carbon Column Observing Network (COCCON). Gobabeb is the first measurement site observaing XCO2 and XCH4 on the African mainland and improves the global coverage of ground-based remote-sensing sites. In order to achieve the high level of precision and accuracy necessary for meaningful greenhouse gas observations, we performed calibration measurements for eight days between November 2015 and March 2016 with the COCCON reference EM27/SUN spectrometer operated at the Karlsruhe Institute of Technology. We derived scaling factors for XCO2, XCH4 and XCO with respect to the reference instrument that are close to 1.0. We compare the results obtained in Gobabeb to measurements at Reunion Island and Lauder from the Total Carbon Column Observing Network (TCCON). We choose these TCCON sites because, while 4000 km apart, the instruments at Gobabeb and Reunion Island operate at roughly the same latitude. The Lauder station is the southernmost TCCON station and functions as a background site without a pronounced XCO2 seasonal cycle. We find a good agreement for the absolute Xgas values and representative diurnal variability. Together with the absence of long term drifts this highlights the quality of the COCCON measurements. In Southern hemispheric summer we observe lower XCO2 values at Gobabeb compared to the TCCON stations, likely due to the influence of the African biosphere. We performed coincident measurements with the Greenhouse Gases Observing Satellite (GOSAT), where GOSAT observed three nearby specific observation points, over the sand desert south of the station, directly over Gobabeb and over the gravel plains to the north. GOSAT H-gain XCO2 and XCH4 agree with the EM27/SUN measurements within the 1 σ uncertainty limit. The number of coincidence soundings is limited, but we confirm a bias of 1.2–2.6 ppm between GOSAT M-gain and H-gain XCO2 soundings depending on the target point. This is in agreement with results reported by a previous study and the GOSAT validation team. We also report a bias of 5.9–9.8 ppb between GOSAT M-gain and H-gain XCH4 measurements which is within the range given by the GOSAT validation team. Finally we use the COCCON measurements to evaluate inversion-optimized CAMS model data. For XCO2 we find high biases of 0.9 ± 0.5 ppm for the OCO-2 assimilated product and 1.1 ± 0.6 ppm for the in situ-driven product with R2 > 0.9 in both cases. These biases are comparable to reported offsets between the model and TCCON data. The OCO-2 assimilated model product is able to reproduce the drawdown of XCO2 observed by the COCCON instrument beginning of 2017, opposed to the in situ-optimized product. Also for XCH4 the observed biases are in line with prior model comparisons with TCCON.

2021 ◽  
Vol 14 (9) ◽  
pp. 5887-5911
Author(s):  
Matthias M. Frey ◽  
Frank Hase ◽  
Thomas Blumenstock ◽  
Darko Dubravica ◽  
Jochen Groß ◽  
...  

Abstract. In this study, we present column-averaged dry-air mole fractions of CO2 (XCO2), CH4 (XCH4) and CO (XCO) from a recently established measurement site in Gobabeb, Namibia. Gobabeb is a hyperarid desert site at the sharp transition zone between the sand desert and the gravel plains, offering unique characteristics with respect to surface albedo properties. Measurements started in January 2015 and are performed utilizing a ground-based Fourier transform infrared (FTIR) EM27/SUN spectrometer of the COllaborative Carbon Column Observing Network (COCCON). Gobabeb is the first measurement site observing XCO2 and XCH4 on the African mainland and improves the global coverage of ground-based remote-sensing sites. In order to achieve the high level of precision and accuracy necessary for meaningful greenhouse gas observations, we performed calibration measurements for 8 d between November 2015 and March 2016 with the COCCON reference EM27/SUN spectrometer operated at the Karlsruhe Institute of Technology. We derived scaling factors for XCO2, XCH4 and XCO with respect to the reference instrument that are close to 1.0. We compare the results obtained in Gobabeb to measurements from the Total Carbon Column Observing Network (TCCON) sites at Réunion Island and Lauder. We choose these TCCON sites because, while 4000 km apart, the instruments at Gobabeb and Réunion Island operate at roughly the same latitude. The Lauder station is the southernmost TCCON station and functions as a background site without a pronounced XCO2 seasonal cycle. We find a good agreement for the absolute Xgas values, apart from an expected XCH4 offset between Gobabeb and Lauder due to significantly different tropopause height, as well as representative intraday variability between TCCON and COCCON. Together with the absence of long-term drifts, this highlights the quality of the COCCON measurements. In the southern hemispheric summer, we observe lower XCO2 values at Gobabeb compared to the TCCON stations, likely due to the influence of the African biosphere. We performed coincident measurements with the Greenhouse Gases Observing Satellite (GOSAT), where GOSAT observed three nearby specific observation points, over the sand desert south of the station, directly over Gobabeb and over the gravel plains to the north. GOSAT H-gain XCO2 and XCH4 agree with the EM27/SUN measurements within the 1σ uncertainty limit. The number of coincident soundings is limited, but we confirm a bias of 1.2–2.6 ppm between GOSAT M-gain and H-gain XCO2 retrievals depending on the target point. This is in agreement with results reported by a previous study and the GOSAT validation team. We also report a bias of 5.9–9.8 ppb between GOSAT M-gain and H-gain XCH4 measurements which is within the range given by the GOSAT validation team. Finally, we use the COCCON measurements to evaluate inversion-optimized CAMS model data. For XCO2, we find high biases of 0.9 ± 0.5 ppm for the Orbiting Carbon Observatory-2 (OCO-2) assimilated product and 1.1 ± 0.6 ppm for the in situ-driven product with R2 > 0.9 in both cases. These biases are comparable to reported offsets between the model and TCCON data. The OCO-2 assimilated model product is able to reproduce the drawdown of XCO2 observed by the COCCON instrument at the beginning of 2017, as opposed to the in situ-optimized product. Also, for XCH4, the observed biases are in line with prior model comparisons with TCCON.


2013 ◽  
Vol 597 ◽  
pp. 1-36 ◽  
Author(s):  
Odile Naim ◽  
Catherine Tourrand ◽  
Enric Ballesteros ◽  
Stuart Semple ◽  
Lionel Bigot ◽  
...  

2015 ◽  
Vol 9 (6) ◽  
pp. 2219-2235 ◽  
Author(s):  
K. E. Allstadt ◽  
D. E. Shean ◽  
A. Campbell ◽  
M. Fahnestock ◽  
S. D. Malone

Abstract. We present surface velocity maps derived from repeat terrestrial radar interferometry (TRI) measurements and use these time series to examine seasonal and diurnal dynamics of alpine glaciers at Mount Rainier, Washington. We show that the Nisqually and Emmons glaciers have small slope-parallel velocities near the summit (< 0.2 m day−1), high velocities over their upper and central regions (1.0–1.5 m day−1), and stagnant debris-covered regions near the terminus (< 0.05 m day−1). Velocity uncertainties are as low as &amp;pm;0.02–0.08 m day−1. We document a large seasonal velocity decrease of 0.2–0.7 m day−1 (−25 to −50 %) from July to November for most of the Nisqually Glacier, excluding the icefall, suggesting significant seasonal subglacial water storage under most of the glacier. We did not detect diurnal variability above the noise level. Simple 2-D ice flow modeling using TRI velocities suggests that sliding accounts for 91 and 99 % of the July velocity field for the Emmons and Nisqually glaciers with possible ranges of 60–97 and 93–99.5 %, respectively, when considering model uncertainty. We validate our observations against recent in situ velocity measurements and examine the long-term evolution of Nisqually Glacier dynamics through comparisons with historical velocity data. This study shows that repeat TRI measurements with > 10 km range can be used to investigate spatial and temporal variability of alpine glacier dynamics over large areas, including hazardous and inaccessible areas.


2018 ◽  
Vol 18 (19) ◽  
pp. 13881-13901 ◽  
Author(s):  
Minqiang Zhou ◽  
Bavo Langerock ◽  
Corinne Vigouroux ◽  
Mahesh Kumar Sha ◽  
Michel Ramonet ◽  
...  

Abstract. Atmospheric carbon monoxide (CO) and methane (CH4) mole fractions are measured by ground-based in situ cavity ring-down spectroscopy (CRDS) analyzers and Fourier transform infrared (FTIR) spectrometers at two sites (St Denis and Maïdo) on Reunion Island (21∘ S, 55∘ E) in the Indian Ocean. Currently, the FTIR Bruker IFS 125HR at St Denis records the direct solar spectra in the near-infrared range, contributing to the Total Carbon Column Observing Network (TCCON). The FTIR Bruker IFS 125HR at Maïdo records the direct solar spectra in the mid-infrared (MIR) range, contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). In order to understand the atmospheric CO and CH4 variability on Reunion Island, the time series and seasonal cycles of CO and CH4 from in situ and FTIR (NDACC and TCCON) measurements are analyzed. Meanwhile, the difference between the in situ and FTIR measurements are discussed. The CO seasonal cycles observed from the in situ measurements at Maïdo and FTIR retrievals at both St Denis and Maïdo are in good agreement with a peak in September–November, primarily driven by the emissions from biomass burning in Africa and South America. The dry-air column averaged mole fraction of CO (XCO) derived from the FTIR MIR spectra (NDACC) is about 15.7 ppb larger than the CO mole fraction near the surface at Maïdo, because the air in the lower troposphere mainly comes from the Indian Ocean while the air in the middle and upper troposphere mainly comes from Africa and South America. The trend for CO on Reunion Island is unclear during the 2011–2017 period, and more data need to be collected to get a robust result. A very good agreement is observed in the tropospheric and stratospheric CH4 seasonal cycles between FTIR (NDACC and TCCON) measurements, and in situ and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite measurements, respectively. In the troposphere, the CH4 mole fraction is high in August–September and low in December–January, which is due to the OH seasonal variation. In the stratosphere, the CH4 mole fraction has its maximum in March–April and its minimum in August–October, which is dominated by vertical transport. In addition, the different CH4 mole fractions between the in situ, NDACC and TCCON CH4 measurements in the troposphere are discussed, and all measurements are in good agreement with the GEOS-Chem model simulation. The trend of XCH4 is 7.6±0.4 ppb yr−1 from the TCCON measurements over the 2011 to 2017 time period, which is consistent with the CH4 trend of 7.4±0.5 ppb yr−1 from the in situ measurements for the same time period at St Denis.


2013 ◽  
Vol 6 (10) ◽  
pp. 2865-2877 ◽  
Author(s):  
J.-L. Baray ◽  
Y. Courcoux ◽  
P. Keckhut ◽  
T. Portafaix ◽  
P. Tulet ◽  
...  

Abstract. Since the nineties, atmospheric measurement systems have been deployed at Reunion Island, mainly for monitoring the atmospheric composition in the framework of NDSC/NDACC (Network for the Detection of Stratospheric Change/Network for the Detection of Atmospheric Composition Change). The location of Reunion Island presents a great interest because there are very few multi-instrumented stations in the tropics and particularly in the southern hemisphere. In 2012, a new observatory was commissioned in Maïdo at 2200 m above sea level: it hosts various instruments for atmospheric measurements, including lidar systems, spectro-radiometers and in situ gas and aerosol measurements. This new high-altitude Maïdo station provides an opportunity: 1. to improve the performance of the optical instruments above the marine boundary layer, and to open new perspectives on upper troposphere and lower stratosphere studies; 2. to develop in situ measurements of the atmospheric composition for climate change surveys, in a reference site in the tropical/subtropical region of the southern hemisphere; 3. to offer trans-national access to host experiments or measurement campaigns for focused process studies.


2018 ◽  
Author(s):  
Minqiang Zhou ◽  
Bavo Langerock ◽  
Corinne Vigouroux ◽  
Mahesh Kumar Sha ◽  
Michel Ramonet ◽  
...  

Abstract. Atmospheric carbon monoxide (CO) and methane (CH4) concentrations are measured by ground-based in-situ Cavity Ring-Down Spectroscopy (CRDS) analyzers and Fourier transform infrared (FTIR) spectrometers at two sites (St Denis and Maïdo) on Reunion Island (21° S, 55° E) in the Indian Ocean. Currently, the FTIR Bruker IFS 125HR at St Denis records the direct solar spectra in the near-infrared range, contributing to the Total Carbon Column Observing Network (TCCON). The FTIR Bruker IFS 125HR at Maïdo records the direct solar spectra in the mid-infrared range, contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). In order to understand the atmospheric CO and CH4 variability on Reunion Island, the time series and seasonal cycles of CO and CH4 from in-situ and FTIR (NDACC and TCCON) measurements are analysed. Meanwhile, the difference between the in-situ and FTIR measurements are discussed. The CO seasonal cycles observed from the in-situ measurements at Maïdo and FTIR retrievals both at St Denis and Maïdo are in good agreement with a peak in September–November, primarily driven by the emissions from biomass burning in Africa and South America. The dry-air column averaged mole fraction of CO (XCO) derived from the FTIR MIR spectra (NDACC) is about 15.7 ppb larger than the CO mole fraction near the surface at Maïdo, because the air in the lower troposphere mainly comes from the Indian Ocean while the air in the middle and upper troposphere mainly comes from Africa and South America. The trend for CO on Reunion Island is unclear during 2011–2017, and more data need to be collected to get a robust result. A very good agreement is observed in the tropospheric and stratospheric CH4 seasonal cycles between FTIR (NDACC and TCCON) measurements, and in-situ and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite measurements, respectively. In the troposphere, the CH4 mole fraction is high in August–September and low in December–January, which is due to the OH seasonal variation. In the stratosphere, CH4 concentration has its maximum in March–April and its minimum in August–October, which is dominated by the vertical transport. In addition, the different CH4 concentration between the in-situ, NDACC and TCCON CH4 measurements in the troposphere are discussed, and all measurements are in good agreement with the GEOS-Chem model simulation. The trend of XCH4 is 7.6 ± 0.4 ppb/year from the TCCON measurements over the 2011–2017 time period, which is consistent with the CH4 of 7.4 ± 0.5 ppb/year from the in-situ measurements for the same time period at St Denis.


2014 ◽  
Vol 7 (10) ◽  
pp. 10513-10558
Author(s):  
S. Barthlott ◽  
M. Schneider ◽  
F. Hase ◽  
A. Wiegele ◽  
E. Christner ◽  
...  

Abstract. Within the NDACC (Network for the Detection of Atmospheric Composition Change), more than 20 FTIR (Fourier–Transform InfraRed) spectrometers, spread worldwide, provide long-term data records of many atmospheric trace gases. We present a method that uses measured and modelled XCO2 for assessing the consistency of these data records. Our NDACC XCO2 retrieval setup is kept simple so that it can easily be adopted for any NDACC/FTIR-like measurement made since the late 1950s. By a comparison to coincident TCCON (Total Carbon Column Observing Network) measurements, we empirically demonstrate the useful quality of this NDACC XCO2 product (empirically obtained scatter between TCCON and NDACC is about 4‰ for daily mean as well as monthly mean comparisons and the bias is 25‰). As XCO2 model we developed and used a simple regression model fitted to CarbonTracker results and the Mauna Loa CO2 in-situ records. A comparison to TCCON data suggests an uncertainty of the model for monthly mean data of below 3‰. We apply the method to the NDACC/FTIR spectra that are used within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) and demonstrate that there is a good consistency for these globally representative set of spectra measured since 1996: the scatter between the modelled and measured XCO2 on a yearly time scale is only 3‰.


2017 ◽  
Author(s):  
Kieran M. Stanley ◽  
Aoife Grant ◽  
Simon O'Doherty ◽  
Dickon Young ◽  
Alistair J. Manning ◽  
...  

Abstract. A network of tall tower measurement stations was set up in 2012 across the United Kingdom to expand measurements made at the long-term background northern hemispheric site, Mace Head, Ireland. Reliable and precise in situ greenhouse gas (GHG) analysis systems were developed and deployed at three sites in the UK with automated custom-built instrumentation measuring a suite of GHGs. The UK Deriving Emissions linked to Climate Change (UK DECC) network uses tall (165–230 m) open lattice telecommunications towers, which provide a convenient platform for boundary layer trace gas sampling. In this paper we describe the automated measurement system and first results from the UK DECC network for CO2, CH4, N2O, SF6, CO and H2. CO2 and CH4 are measured at all of the UK DECC sites by cavity ring-down spectroscopy (CRDS) with multiple inlet heights at two of the three tall tower sites to assess for boundary layer stratification. The long-term 1-minute mean precisions (1σ) of CRDS measurements at background mole fractions for January 2012 to September 2015 is


2012 ◽  
Vol 12 (9) ◽  
pp. 25573-25615 ◽  
Author(s):  
A. Riihelä ◽  
T. Manninen ◽  
V. Laine ◽  
K. Andersson ◽  
F. Kaspar

Abstract. We present a novel 28-yr dataset of Earth's black-sky surface albedo, derived from AVHRR instruments. The dataset is created using algorithms to separately derive the surface albedo for different land use areas globally. Snow, sea ice, open water and vegetation are all treated independently. The product features corrections for the atmospheric effect in satellite-observed surface radiances, a BRDF correction for the anisotropic reflectance properties of natural surfaces, and a novel topography correction of geolocation and radiometric accuracy of surface reflectance observations over mountainous areas. The dataset is based on a homogenized AVHRR radiance timeseries. The product is validated against quality-controlled in situ observations of clear-sky surface albedo at various BSRN sites around the world. Snow and ice albedo retrieval validation is given particular attention using BSRN sites over Antarctica, Greenland Climate Network stations on the Greenland Ice Sheet (GrIS), as well as sea ice albedo data from the SHEBA and Tara expeditions. The product quality is found to be comparable to other previous long-term surface albedo datasets from AVHRR.


Sign in / Sign up

Export Citation Format

Share Document