scholarly journals Operational total and tropospheric NO<sub>2</sub> column retrieval for GOME-2

2011 ◽  
Vol 4 (7) ◽  
pp. 1491-1514 ◽  
Author(s):  
P. Valks ◽  
G. Pinardi ◽  
A. Richter ◽  
J.-C. Lambert ◽  
N. Hao ◽  
...  

Abstract. This paper presents the algorithm for the operational near real time retrieval of total and tropospheric NO2 columns from the Global Ozone Monitoring Experiment (GOME-2). The retrieval is performed with the GOME Data Processor (GDP) version 4.4 as used by the EUMETSAT Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). The differential optical absorption spectroscopy (DOAS) method is used to determine NO2 slant columns from GOME-2 (ir)radiance data in the 425–450 nm range. Initial total NO2 columns are computed using stratospheric air mass factors, and GOME-2 derived cloud properties are used to calculate the air mass factors for scenarios in the presence of clouds. To obtain the stratospheric NO2 component, a spatial filtering approach is used, which is shown to be an improvement on the Pacific reference sector method. Tropospheric air mass factors are computed using monthly averaged NO2 profiles from the MOZART-2 chemistry transport model. An error analysis shows that the random error in the GOME-2 NO2 slant columns is approximately 0.45 × 1015 molec cm−2. As a result of the improved quartz diffuser plate used in the GOME-2 instrument, the systematic error in the slant columns is strongly reduced compared to GOME/ERS-2. The estimated uncertainty in the GOME-2 tropospheric NO2 column for polluted conditions ranges from 40 to 80 %. An end-to-end ground-based validation approach for the GOME-2 NO2 columns is illustrated based on multi-axis MAXDOAS measurements at the Observatoire de Haute Provence (OHP). The GOME-2 stratospheric NO2 columns are found to be in good overall agreement with coincident ground-based measurements at OHP. A time series of the MAXDOAS and the GOME-2 tropospheric NO2 columns shows that pollution episodes at OHP are well captured by GOME-2. Monthly mean tropospheric columns are in very good agreement, with differences generally within 0.5 × 1015 molec cm−2.

2011 ◽  
Vol 4 (2) ◽  
pp. 1617-1676 ◽  
Author(s):  
P. Valks ◽  
G. Pinardi ◽  
A. Richter ◽  
J.-C. Lambert ◽  
N. Hao ◽  
...  

Abstract. This paper presents the algorithm for the operational near real time retrieval of total and tropospheric NO2 columns from the Global Ozone Monitoring Experiment (GOME-2). The retrieval is performed with the GOME Data Processor (GDP) version 4.4 as used by the EUMETSAT Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). The Differential Optical Absorption Spectroscopy (DOAS) method is used to determine NO2 slant columns from GOME-2 (ir)radiance data in the 425–450 nm range. Initial total NO2 columns are computed using stratospheric air mass factors, and GOME-2 derived cloud properties are used to calculate the air mass factors for scenarios in the presence of clouds. To obtain the stratospheric NO2 component, a spatial filtering approach is used, which is shown to be an improvement on the Pacific reference sector method. Tropospheric air mass factors are computed using monthly averaged NO2 profiles from the MOZART-2 chemistry transport model. An error assessment shows that the random error in the GOME-2 NO2 slant columns is approximately 0.45 × 1015 molec cm−2. As a result of the improved quartz diffuser plate used in the GOME-2 instrument, the systematic error in the slant columns is strongly reduced compared to GOME/ERS-2. The estimated uncertainty in the GOME-2 tropospheric NO2 column for polluted conditions ranges from 40 to 80%. An end-to-end ground-based validation approach for the GOME-2 NO2 columns is illustrated based on MAX-DOAS measurements at the Observatoire de Haute Provence (OHP). The GOME-2 stratospheric NO2 columns are found to be in good overall agreement with coincident ground-based measurements at OHP. A time series of the MAX-DOAS and the GOME-2 tropospheric NO2 columns shows that pollution episodes at OHP are well captured by GOME-2. Monthly mean tropospheric columns are in very good agreement, with differences generally within 0.5 × 1015 molec cm−2.


2020 ◽  
Vol 13 (3) ◽  
pp. 1413-1426 ◽  
Author(s):  
Ping Wang ◽  
Ankie Piters ◽  
Jos van Geffen ◽  
Olaf Tuinder ◽  
Piet Stammes ◽  
...  

Abstract. Tropospheric NO2 and stratospheric NO2 vertical column densities are important TROPOspheric Monitoring Instrument (TROPOMI) data products. In order to validate the TROPOMI NO2 products, KNMI Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments have measured NO2 on ship cruises over the Atlantic and the Pacific oceans. The MAX-DOAS instruments have participated in five cruises on board RV Sonne (in 2017 and 2019) and RV Maria S. Merian (in 2018). The MAX-DOAS measurements were acquired over 7 months and spanned about 90∘ in latitude and 300∘ in longitude. During the cruises aerosol measurements from Microtops sun photometers were also taken. The MAX-DOAS measured stratospheric NO2 columns between 1.5×1015 and 3.5×1015 molec cm−2 and tropospheric NO2 up to 0.6×1015 molec cm−2. The MAX-DOAS stratospheric NO2 vertical column densities have been compared with TROPOMI stratospheric NO2 vertical column densities and the stratospheric NO2 vertical column densities simulated by the global chemistry Transport Model, version 5, Massively Parallel model (TM5-MP). Good correlation is found between the MAX-DOAS and TROPOMI and TM5 stratospheric NO2 vertical column densities, with a correlation coefficient of 0.93 or larger. The TROPOMI and TM5 stratospheric NO2 vertical column densities are about 0.4×1015 molec cm−2 (19 %) higher than the MAX-DOAS measurements. The TROPOMI tropospheric NO2 also has good agreement with the MAX-DOAS measurements. The tropospheric NO2 vertical column density is as low as 0.5×1015 molec cm−2 over remote oceans.


2019 ◽  
Vol 12 (2) ◽  
pp. 1029-1057 ◽  
Author(s):  
Song Liu ◽  
Pieter Valks ◽  
Gaia Pinardi ◽  
Isabelle De Smedt ◽  
Huan Yu ◽  
...  

Abstract. An improved algorithm for the retrieval of total and tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment-2 (GOME-2) is presented. The refined retrieval will be implemented in a future version of the GOME Data Processor (GDP) as used by the EUMETSAT Satellite Application Facility on Atmospheric Composition and UV Radiation (AC-SAF). The first main improvement is the application of an extended 425–497 nm wavelength fitting window in the differential optical absorption spectroscopy (DOAS) retrieval of the NO2 slant column density, based on which initial total NO2 columns are computed using stratospheric air mass factors (AMFs). Updated absorption cross sections and a linear offset correction are used for the large fitting window. An improved slit function treatment is applied to compensate for both long-term and in-orbit drift of the GOME-2 slit function. Compared to the current operational (GDP 4.8) dataset, the use of these new features increases the NO2 columns by ∼1–3×1014 molec cm2 and reduces the slant column error by ∼24 %. In addition, the bias between GOME-2A and GOME-2B measurements is largely reduced by adopting a new level 1b data version in the DOAS retrieval. The retrieved NO2 slant columns show good consistency with the Quality Assurance for Essential Climate Variables (QA4ECV) retrieval with a good overall quality. Second, the STRatospheric Estimation Algorithm from Mainz (STREAM), which was originally developed for the TROPOspheric Monitoring Instrument (TROPOMI) instrument, was optimised for GOME-2 measurements to determine the stratospheric NO2 column density. Applied to synthetic GOME-2 data, the estimated stratospheric NO2 columns from STREAM shows good agreement with the a priori truth. An improved latitudinal correction is introduced in STREAM to reduce the biases over the subtropics. Applied to GOME-2 measurements, STREAM largely reduces the overestimation of stratospheric NO2 columns over polluted regions in the GDP 4.8 dataset. Third, the calculation of AMF applies an updated box-air-mass factor (box-AMF) look-up table (LUT) calculated using the latest version 2.7 of the Vector-LInearized Discrete Ordinate Radiative Transfer (VLIDORT) model with an increased number of reference points and vertical layers, a new GOME-2 surface albedo climatology, and improved a priori NO2 profiles obtained from the TM5-MP chemistry transport model. A large effect (mainly enhancement in summer and reduction in winter) on the retrieved tropospheric NO2 columns by more than 10 % is found over polluted regions. To evaluate the GOME-2 tropospheric NO2 columns, an end-to-end validation is performed using ground-based multiple-axis DOAS (MAXDOAS) measurements. The validation is illustrated for six stations covering urban, suburban, and background situations. Compared to the GDP 4.8 product, the new dataset presents improved agreement with the MAXDOAS measurements for all the stations.


2005 ◽  
Vol 5 (9) ◽  
pp. 2311-2331 ◽  
Author(s):  
K. F. Boersma ◽  
H. J. Eskes ◽  
E. W. Meijer ◽  
H. M. Kelder

Abstract. Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME) satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2). A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme) to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme) to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal correlation methods, from cloud-free and cloud-covered observations, and from two different lightning parameterizations. Accounting for a wide variety of random and possible systematic errors, we estimate the global NOx production from lightning to be in the range 1.1–6.4 Tg N in 1997.


2021 ◽  
Author(s):  
Song Liu ◽  
Pieter Valks ◽  
Gaia Pinardi ◽  
Jian Xu ◽  
Ka Lok Chan ◽  
...  

Abstract. Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km × 3.5 km (7 km × 3.5 km before 6 August 2019). The nitrogen dioxide (NO2) retrieval algorithm for the TROPOMI instrument consists of three steps: the spectral fitting of the slant column, the separation of stratospheric and tropospheric contributions, and the conversion of the slant column to a vertical column using an air mass factor (AMF) calculation. In this work, an improved tropospheric NO2 retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented using the STRatospheric Estimation Algorithm from Mainz (STREAM), which was developed as a verification algorithm for TROPOMI and does not require chemistry transport model data as input. A directionally dependent STREAM (DSTREAM) is developed to correct for the dependency of the stratospheric NO2 on the viewing geometry by up to 2 × 1014 molec/cm2. Applied to synthetic TROPOMI data, the uncertainty in the stratospheric column is 3.5 × 1014 molec/cm2 for polluted conditions. Applied to actual measurements, the smooth variation of stratospheric NO2 at low latitudes is conserved, and stronger stratospheric variation at higher latitudes are captured. For AMF calculation, the climatological surface albedo data is replaced by geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) obtained directly from TROPOMI measurements with a high spatial resolution. Mesoscale-resolution a priori NO2 profiles are obtained from the regional POLYPHEMUS/DLR chemistry transport model with the TNO-MACC emission inventory. Based on the latest TROPOMI operational cloud parameters, a more realistic cloud treatment is provided by a clouds-as-layers (CAL) model, which treats the clouds as uniform layers of water droplets, instead of the clouds-as-reflecting-boundaries (CRB) model, in which clouds are simplified as Lambertian reflectors. For the error analysis, the tropospheric AMF uncertainty, which is the largest source of NO2 uncertainty for polluted scenarios, ranges between 20 % and 50 %, leading to a total uncertainty in the tropospheric NO2 column in the 30–60 % range. From a validation performed with ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements, the improved tropospheric NO2 data shows good correlations for nine European urban/suburban stations with an average correlation coefficient of 0.78. The implementation of the algorithm improvements leads to a decrease of the relative difference from −55.3 % to −34.7 % on average.


2005 ◽  
Vol 5 (3) ◽  
pp. 3047-3104 ◽  
Author(s):  
K. F. Boersma ◽  
H. J. Eskes ◽  
E. W. Meijer ◽  
H. M. Kelder

Abstract. Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME) satellite spectrometer are used to quantify the source strength and 3D distribution of lightning produced nitrogen oxides (NOx=NO2+NO2). A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parametrisations, one relating convective preciptation (CP scheme) to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme) to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parametrisations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parametrisations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal correlation methods, from cloud-free and cloud-covered observations, and from two different lightning parametrisations. Accounting for a wide variety of random and possible systematic errors, we estimate the global NOx production from lightning to be in the range 1.1–6.4 TgN in 1997.


2019 ◽  
Author(s):  
Song Liu ◽  
Pieter Valks ◽  
Gaia Pinardi ◽  
Jian Xu ◽  
Athina Argyrouli ◽  
...  

Abstract. An improved tropospheric nitrogen dioxide (NO2) retrieval algorithm from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument based on air mass factor (AMF) calculations performed with more realistic model parameters is presented. The viewing angle-dependency of surface albedo is taken into account by improving the GOME-2 Lambertian-equivalent reflectivity (LER) climatology with a directionally dependent LER (DLER) dataset over land and an ocean surface albedo parametrization over water. A priori NO2 profiles with higher spatial and temporal resolutions are obtained from the IFS(CB05BASCOE) chemistry transport model based on recent emission inventories. A more realistic cloud treatment is provided by a Cloud-As-Layers (CAL) approach, which treats the clouds as uniform layers of water droplets, instead of the current Clouds-as-Reflecting-Boundaries (CRB) model, which assumes the clouds as Lambertian reflectors. Improvements in the AMF calculation affect the tropospheric NO2 columns on average within ±15 % in winter and ±5 % in summer over largely polluted regions. In addition, the impact of aerosols on our tropospheric NO2 retrieval is investigated by comparing the concurrent retrievals based on ground-based aerosol measurements (explicit aerosol correction) and aerosol-induced cloud parameters (implicit aerosol correction). Compared to the implicit aerosol correction through the CRB cloud parameters, the use of CAL reduces the AMF errors by more than 10 %. Finally, to evaluate the improved GOME-2 tropospheric NO2 columns, a validation is performed using ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAXDOAS) measurements at the BIRA-IASB Xianghe station. The improved tropospheric NO2 dataset shows good agreement with coincident ground-based measurements with a correlation coefficient of 0.94 and a relative difference of −9.9 % on average.


2021 ◽  
Vol 14 (11) ◽  
pp. 7297-7327
Author(s):  
Song Liu ◽  
Pieter Valks ◽  
Gaia Pinardi ◽  
Jian Xu ◽  
Ka Lok Chan ◽  
...  

Abstract. Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km × 3.5 km (7 km × 3.5 km before 6 August 2019). The DLR nitrogen dioxide (NO2) retrieval algorithm for the TROPOMI instrument consists of three steps: the spectral fitting of the slant column, the separation of stratospheric and tropospheric contributions, and the conversion of the slant column to a vertical column using an air mass factor (AMF) calculation. In this work, an improved DLR tropospheric NO2 retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented using the STRatospheric Estimation Algorithm from Mainz (STREAM), which was developed as a verification algorithm for TROPOMI and does not require chemistry transport model data as input. A directionally dependent STREAM (DSTREAM) is developed to correct for the dependency of the stratospheric NO2 on the viewing geometry by up to 2×1014 molec./cm2. Applied to synthetic TROPOMI data, the uncertainty in the stratospheric column is 3.5×1014 molec./cm2 in the case of significant tropospheric sources. Applied to actual measurements, the smooth variation of stratospheric NO2 at low latitudes is conserved, and stronger stratospheric variation at higher latitudes is captured. For AMF calculation, the climatological surface albedo data are replaced by geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) obtained directly from TROPOMI measurements with a high spatial resolution. Mesoscale-resolution a priori NO2 profiles are obtained from the regional POLYPHEMUS/DLR chemistry transport model with the TNO-MACC emission inventory. Based on the latest TROPOMI operational cloud parameters, a more realistic cloud treatment is provided by a Clouds-As-Layers (CAL) model, which treats the clouds as uniform layers of water droplets, instead of the Clouds-As-Reflecting-Boundaries (CRB) model, in which clouds are simplified as Lambertian reflectors. For the error analysis, the tropospheric AMF uncertainty, which is the largest source of NO2 uncertainty for polluted scenarios, ranges between 20 % and 50 %, leading to a total uncertainty in the tropospheric NO2 column in the 30 %–60 % range. From a validation performed with ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements, the new DLR tropospheric NO2 data show good correlations for nine European urban/suburban stations, with an average correlation coefficient of 0.78. The implementation of the algorithm improvements leads to a decrease of the relative difference from −55.3 % to −34.7 % on average in comparison with the DLR reference retrieval. When the satellite averaging kernels are used to remove the contribution of a priori profile shape, the relative difference decreases further to ∼ −20 %.


2010 ◽  
Vol 10 (3) ◽  
pp. 1345-1359 ◽  
Author(s):  
G. G. Pfister ◽  
L. K. Emmons ◽  
D. P. Edwards ◽  
A. Arellano ◽  
T. Campos ◽  
...  

Abstract. We analyze the transport of pollution across the Pacific during the NASA INTEX-B (Intercontinental Chemical Transport Experiment Part B) campaign in spring 2006 and examine how this year compares to the time period for 2000 through 2006. In addition to aircraft measurements of carbon monoxide (CO) collected during INTEX-B, we include in this study multi-year satellite retrievals of CO from the Measurements of Pollution in the Troposphere (MOPITT) instrument and simulations from the chemistry transport model MOZART-4. Model tracers are used to examine the contributions of different source regions and source types to pollution levels over the Pacific. Additional modeling studies are performed to separate the impacts of inter-annual variability in meteorology and dynamics from changes in source strength. Interannual variability in the tropospheric CO burden over the Pacific and the US as estimated from the MOPITT data range up to 7% and a somewhat smaller estimate (5%) is derived from the model. When keeping the emissions in the model constant between years, the year-to-year changes are reduced (2%), but show that in addition to changes in emissions, variable meteorological conditions also impact transpacific pollution transport. We estimate that about 1/3 of the variability in the tropospheric CO loading over the contiguous US is explained by changes in emissions and about 2/3 by changes in meteorology and transport. Biomass burning sources are found to be a larger driver for inter-annual variability in the CO loading compared to fossil and biofuel sources or photochemical CO production even though their absolute contributions are smaller. Source contribution analysis shows that the aircraft sampling during INTEX-B was fairly representative of the larger scale region, but with a slight bias towards higher influence from Asian contributions.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2893 ◽  
Author(s):  
Willem W. Verstraeten ◽  
Klaas Folkert Boersma ◽  
John Douros ◽  
Jason E. Williams ◽  
Henk Eskes ◽  
...  

Top-down estimates of surface NOX emissions were derived for 23 European cities based on the downwind plume decay of tropospheric nitrogen dioxide (NO2) columns from the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) chemistry transport model (CTM) and from Ozone Monitoring Instrument (OMI) satellite retrievals, averaged for the summertime period (April–September) during 2013. Here we show that the top-down NOX emissions derived from LOTOS-EUROS for European urban areas agree well with the bottom-up NOX emissions from the MACC-III inventory data (R2 = 0.88) driving the CTM demonstrating the potential of this method. OMI top-down NOX emissions over the 23 European cities are generally lower compared with the MACC-III emissions and their correlation is slightly lower (R2 = 0.79). The uncertainty on the derived NO2 lifetimes and NOX emissions are on average ~55% for OMI and ~63% for LOTOS-EUROS data. The downwind NO2 plume method applied on both LOTOS-EUROS and OMI tropospheric NO2 columns allows to estimate NOX emissions from urban areas, demonstrating that this is a useful method for real-time updates of urban NOX emissions with reasonable accuracy.


Sign in / Sign up

Export Citation Format

Share Document