scholarly journals Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues

2012 ◽  
Vol 5 (11) ◽  
pp. 2933-2949 ◽  
Author(s):  
I. De Smedt ◽  
M. Van Roozendael ◽  
T. Stavrakou ◽  
J.-F. Müller ◽  
C. Lerot ◽  
...  

Abstract. We present a new dataset of formaldehyde vertical columns retrieved from observations of GOME-2 on board the EUMETSAT MetOp-A platform between 2007 and 2011. The new retrieval scheme, which has been optimised for GOME-2, includes a two-step fitting procedure that strongly reduces the impact of spectral interferences between H2CO and BrO, and a modified DOAS approach that better handles ozone absorption effects at moderately low sun elevations. Owing to these new features, the noise in the H2CO slant columns is reduced by up to 40% in comparison to baseline retrieval settings used operationally. Also, the previously reported underestimation of the H2CO columns in tropical and mid-latitude regions has been largely eliminated, improving the agreement with coincident SCIAMACHY observations. To compensate for the drift of the GOME-2 slit function and to mitigate the instrumental degradation effects on H2CO retrievals, an asymmetric Gaussian line-shape is fitted during the irradiance calibration. Additionally, external parameters used in the tropospheric air mass factor computation (surface reflectances, cloud parameters and a priori profile shapes of H2CO) have been updated using most recent databases. Similar updates were also applied to the historical datasets of GOME and SCIAMACHY, leading to the generation of a consistent multi-mission H2CO data record covering the time period from 1997 until 2011. Comparing the resulting time series of monthly averaged H2CO vertical columns in 12 large regions worldwide, the correlation coefficient between SCIAMACHY and GOME-2 columns is generally higher than 0.8 in the overlap period, and linear regression slopes differ by less than 10% from unity in most of the regions. In comparison to SCIAMACHY, the largely improved spatial sampling of GOME-2 allows for a better characterisation of formaldehyde distribution at the regional scale and/or at shorter timescales, leading to a better identification of the emission sources of non-methane volatile organic compounds.

2012 ◽  
Vol 5 (4) ◽  
pp. 5571-5616 ◽  
Author(s):  
I. De Smedt ◽  
M. Van Roozendael ◽  
T. Stavrakou ◽  
J.-F. Müller ◽  
C. Lerot ◽  
...  

Abstract. We present a new data set of formaldehyde vertical columns retrieved from observations of GOME-2 onboard of the EUMETSAT MetOp-A platform between 2007 and 2011. The new retrieval scheme, which has been optimised for GOME-2, includes a two-step fitting procedure that strongly reduces the impact of spectral interferences between H2CO and BrO, and a modified DOAS approach that better handles ozone absorption effects at moderately low sun elevations. Owing to these new features, the noise in the H2CO slant columns is reduced by up to 40% in comparison to baseline retrieval settings used operationally. Also, the previously reported underestimation of the H2CO columns in tropical and mid-latitudes regions has been largely eliminated, improving the agreement with coincident SCIAMACHY observations. To compensate for the drift of the GOME-2 slit function and to mitigate the instrumental degradation effects on H2CO retrievals, an asymmetric Gaussian line shape is fitted during the irradiance calibration. Additionally, external parameters used in the tropospheric air mass factor computation (surface reflectances, cloud parameters and a priori profile shapes of H2CO) have been updated using most recent data bases. Similar updates were also applied to the historical data sets of GOME and SCIAMACHY leading to the generation of a consistent multi-mission H2CO data record covering the time period from 1997 until 2011. Comparing the resulting time series of monthly averaged H2CO vertical columns in 12 large regions worldwide, the correlation coefficient between SCIAMACHY and GOME-2 columns is generally higher than 0.8 in the overlap period, and linear regression slopes differ by less than 10% from unity in most of the regions. In comparison to SCIAMACHY, the largely improved spatial sampling of GOME-2 allows for a better characterisation of formaldehyde distribution at the regional scale and/or at shorter timescales, leading to a better identification of the emission sources of non-methane volatile organic compounds.


2016 ◽  
Vol 9 (3) ◽  
pp. 909-928 ◽  
Author(s):  
Daniel Fisher ◽  
Caroline A. Poulsen ◽  
Gareth E. Thomas ◽  
Jan-Peter Muller

Abstract. In this paper we evaluate the impact on the cloud parameter retrievals of the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm following the inclusion of stereo-derived cloud top heights as a priori information. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use such independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The Along-Track Scanning Radiometer (AATSR) instrument has two views and three thermal channels, so it is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact of the stereo a priori information on the microphysical cloud properties of cloud optical thickness (COT) and effective radius (RE) was evaluated and generally found to be very small for single-layer clouds conditions over open water (mean RE differences of 2.2 (±5.9) microns and mean COD differences of 0.5 (±1.8) for single-layer ice clouds over open water at elevations of above 9 km, which are most strongly affected by the inclusion of the a priori).


2009 ◽  
Vol 2 (2) ◽  
pp. 679-701 ◽  
Author(s):  
G. E. Thomas ◽  
C. A. Poulsen ◽  
A. M. Sayer ◽  
S. H. Marsh ◽  
S. M. Dean ◽  
...  

Abstract. The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Luca Salvati ◽  
Marco Zitti ◽  
Rosanna Di Bartolomei ◽  
Luigi Perini

A comprehensive diachronic analysis (1951–2010) of precipitation and temperature regimes has been carried out at the national and regional scale in Italy to investigate the impact of climate aridity on the agricultural system. Trends in climate aridity have been also analysed using UNEP aridity index which is the ratio between rainfall and potential evapotranspiration on a yearly basis. During the examined time period, and particularly in the most recent years, a gradual reduction in rainfall and growing temperatures have been observed which have further widened the gap between precipitation amounts and water demand in agriculture.


2015 ◽  
Vol 8 (5) ◽  
pp. 5283-5327
Author(s):  
D. Fisher ◽  
C. A. Poulsen ◽  
G. E. Thomas ◽  
J.-P. Muller

Abstract. In this paper we evaluate the retrievals of cloud top height when stereo derived heights are combined with the radiometric cloud top heights retrieved from the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The AATSR instrument has two views and three thermal channels so is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact on the microphysical properties of the cloud such as optical depth and effective radius was evaluated and found to be very small with the biggest differences occurring over bright land surfaces and for high clouds. Overall the cost of the retrievals increased indicating a poorer radiative fit of radiances to the cloud model, which currently uses a single layer cloud model. Best results and improved fit to the radiances may be obtained in the future if a multi-layer model is used.


2013 ◽  
Vol 6 (1) ◽  
pp. 121-129 ◽  
Author(s):  
H. Gleisner ◽  
S. B. Healy

Abstract. The possibility of simplifying the retrieval scheme required to produce GNSS radio occultation refractivity climatologies is investigated. In a new, simplified retrieval approach, the main statistical analysis is performed in bending angle space and an estimate of the average bending angle profile is then propagated through an Abel transform. The average is composed of means and medians of ionospheric corrected bending angles up to 80 km. Above that, the observed profile is exponentially extrapolated to infinity using a fixed a priori scale height. The new approach circumvents the need to introduce a "statistical optimisation" processing step in which individual bending angle profiles are merged with a priori data, often taken from a climatology. This processing step can be complex, difficult to interpret, and is generally recognised as a potential source of structural uncertainty. The new scheme is compared with the more conventional approach of averaging individual refractivity profiles, produced with the implementation of statistical optimisation used in the EUMETSAT Radio Occultation Meteorology Satellite Application Facility (ROM SAF) operational processing. It is shown that the two GNSS radio occultation climatologies agree to within 0.1% from 5 km up to 35–40 km, for the three months January, February, and March 2011. During this time period, the new approach also produces slightly better agreement with ECMWF analyses between 40–50 km, which is encouraging. The possible limitations of the new approach caused by mean residual ionospheric errors and low observation numbers are discussed briefly, and areas for future work are suggested.


2009 ◽  
Vol 2 (2) ◽  
pp. 981-1026 ◽  
Author(s):  
G. E. Thomas ◽  
C. A. Poulsen ◽  
A. M. Sayer ◽  
S. H. Marsh ◽  
S. M. Dean ◽  
...  

Abstract. The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.


2020 ◽  
Vol 13 (2) ◽  
pp. 755-787 ◽  
Author(s):  
Song Liu ◽  
Pieter Valks ◽  
Gaia Pinardi ◽  
Jian Xu ◽  
Athina Argyrouli ◽  
...  

Abstract. An improved tropospheric nitrogen dioxide (NO2) retrieval algorithm from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument based on air mass factor (AMF) calculations performed with more realistic model parameters is presented. The viewing angle dependency of surface albedo is taken into account by improving the GOME-2 Lambertian-equivalent reflectivity (LER) climatology with a directionally dependent LER (DLER) dataset over land and an ocean surface albedo parameterisation over water. A priori NO2 profiles with higher spatial and temporal resolutions are obtained from the IFS (CB05BASCOE) chemistry transport model based on recent emission inventories. A more realistic cloud treatment is provided by a clouds-as-layers (CAL) approach, which treats the clouds as uniform layers of water droplets, instead of the current clouds-as-reflecting-boundaries (CRB) model, which assumes that the clouds are Lambertian reflectors. On average, improvements in the AMF calculation affect the tropospheric NO2 columns by ±15 % in winter and ±5 % in summer over largely polluted regions. In addition, the impact of aerosols on our tropospheric NO2 retrieval is investigated by comparing the concurrent retrievals based on ground-based aerosol measurements (explicit aerosol correction) and the aerosol-induced cloud parameters (implicit aerosol correction). Compared with the implicit aerosol correction utilising the CRB cloud parameters, the use of the CAL approach reduces the AMF errors by more than 10 %. Finally, to evaluate the improved GOME-2 tropospheric NO2 columns, a validation is performed using ground-based multi-axis differential optical absorption spectroscopy (MAXDOAS) measurements at different BIRA-IASB stations. At the suburban Xianghe station, the improved tropospheric NO2 dataset shows better agreement with coincident ground-based measurements with a correlation coefficient of 0.94.


2019 ◽  
Author(s):  
Song Liu ◽  
Pieter Valks ◽  
Gaia Pinardi ◽  
Jian Xu ◽  
Athina Argyrouli ◽  
...  

Abstract. An improved tropospheric nitrogen dioxide (NO2) retrieval algorithm from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument based on air mass factor (AMF) calculations performed with more realistic model parameters is presented. The viewing angle-dependency of surface albedo is taken into account by improving the GOME-2 Lambertian-equivalent reflectivity (LER) climatology with a directionally dependent LER (DLER) dataset over land and an ocean surface albedo parametrization over water. A priori NO2 profiles with higher spatial and temporal resolutions are obtained from the IFS(CB05BASCOE) chemistry transport model based on recent emission inventories. A more realistic cloud treatment is provided by a Cloud-As-Layers (CAL) approach, which treats the clouds as uniform layers of water droplets, instead of the current Clouds-as-Reflecting-Boundaries (CRB) model, which assumes the clouds as Lambertian reflectors. Improvements in the AMF calculation affect the tropospheric NO2 columns on average within ±15 % in winter and ±5 % in summer over largely polluted regions. In addition, the impact of aerosols on our tropospheric NO2 retrieval is investigated by comparing the concurrent retrievals based on ground-based aerosol measurements (explicit aerosol correction) and aerosol-induced cloud parameters (implicit aerosol correction). Compared to the implicit aerosol correction through the CRB cloud parameters, the use of CAL reduces the AMF errors by more than 10 %. Finally, to evaluate the improved GOME-2 tropospheric NO2 columns, a validation is performed using ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAXDOAS) measurements at the BIRA-IASB Xianghe station. The improved tropospheric NO2 dataset shows good agreement with coincident ground-based measurements with a correlation coefficient of 0.94 and a relative difference of −9.9 % on average.


GIS Business ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 85-98
Author(s):  
Idoko Peter

This research the impact of competitive quasi market on service delivery in Benue State University, Makurdi Nigeria. Both primary and secondary source of data and information were used for the study and questionnaire was used to extract information from the purposively selected respondents. The population for this study is one hundred and seventy three (173) administrative staff of Benue State University selected at random. The statistical tools employed was the classical ordinary least square (OLS) and the probability value of the estimates was used to tests hypotheses of the study. The result of the study indicates that a positive relationship exist between Competitive quasi marketing in Benue State University, Makurdi Nigeria (CQM) and Transparency in the service delivery (TRSP) and the relationship is statistically significant (p<0.05). Competitive quasi marketing (CQM) has a negative effect on Observe Competence in Benue State University, Makurdi Nigeria (OBCP) and the relationship is not statistically significant (p>0.05). Competitive quasi marketing (CQM) has a positive effect on Innovation in Benue State University, Makurdi Nigeria (INVO) and the relationship is statistically significant (p<0.05) and in line with a priori expectation. This means that a unit increases in Competitive quasi marketing (CQM) will result to a corresponding increase in innovation in Benue State University, Makurdi Nigeria (INVO) by a margin of 22.5%. It was concluded that government monopoly in the provision of certain types of services has greatly affected the quality of service experience in the institution. It was recommended among others that the stakeholders in the market has to be transparent so that the system will be productive to serve the society effectively


Sign in / Sign up

Export Citation Format

Share Document