scholarly journals Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON

2016 ◽  
Vol 9 (2) ◽  
pp. 683-709 ◽  
Author(s):  
Susan Kulawik ◽  
Debra Wunch ◽  
Christopher O'Dell ◽  
Christian Frankenberg ◽  
Maximilian Reuter ◽  
...  

Abstract. Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO2 data record. Harmonizing satellite CO2 measurements is particularly important since the differences in instruments, observing geometries, sampling strategies, etc. imbue different measurement characteristics in the various satellite CO2 data products. We focus on validating model and satellite observation attributes that impact flux estimates and CO2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry-air mole fraction (XCO2) for Greenhouse gases Observing SATellite (GOSAT) (Atmospheric CO2 Observations from Space, ACOS b3.5) and SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) (Bremen Optimal Estimation DOAS, BESD v2.00.08) as well as the CarbonTracker (CT2013b) simulated CO2 mole fraction fields and the Monitoring Atmospheric Composition and Climate (MACC) CO2 inversion system (v13.1) and compare these to Total Carbon Column Observing Network (TCCON) observations (GGG2012/2014). We find standard deviations of 0.9, 0.9, 1.7, and 2.1 ppm vs. TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single observation errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. We quantify how satellite error drops with data averaging by interpreting according to error2 = a2 + b2/n (with n being the number of observations averaged, a the systematic (correlated) errors, and b the random (uncorrelated) errors). a and b are estimated by satellites, coincidence criteria, and hemisphere. Biases at individual stations have year-to-year variability of  ∼  0.3 ppm, with biases larger than the TCCON-predicted bias uncertainty of 0.4 ppm at many stations. We find that GOSAT and CT2013b underpredict the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46 and 53° N, MACC overpredicts between 26 and 37° N, and CT2013b underpredicts the seasonal cycle amplitude in the Southern Hemisphere (SH). The seasonal cycle phase indicates whether a data set or model lags another data set in time. We find that the GOSAT measurements improve the seasonal cycle phase substantially over the prior while SCIAMACHY measurements improve the phase significantly for just two of seven sites. The models reproduce the measured seasonal cycle phase well except for at Lauder_125HR (CT2013b) and Darwin (MACC). We compare the variability within 1 day between TCCON and models in JJA; there is correlation between 0.2 and 0.8 in the NH, with models showing 10–50 % the variability of TCCON at different stations and CT2013b showing more variability than MACC. This paper highlights findings that provide inputs to estimate flux errors in model assimilations, and places where models and satellites need further investigation, e.g., the SH for models and 45–67° N for GOSAT and CT2013b.

2015 ◽  
Vol 8 (6) ◽  
pp. 6217-6277 ◽  
Author(s):  
S. S. Kulawik ◽  
D. Wunch ◽  
C. O'Dell ◽  
C. Frankenberg ◽  
M. Reuter ◽  
...  

Abstract. Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO2 data record. We focus on validating model and satellite observation attributes that impact flux estimates and CO2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry air mole fraction (XCO2) for GOSAT (ACOS b3.5) and SCIAMACHY (BESD v2.00.08) as well as the CarbonTracker (CT2013b) simulated CO2 mole fraction fields and the MACC CO2 inversion system (v13.1) and compare these to TCCON observations (GGG2014). We find standard deviations of 0.9 ppm, 0.9, 1.7, and 2.1 ppm versus TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single target errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. When satellite data are averaged and interpreted according to error2 = a2+ b2 /n (where n are the number of observations averaged, a are the systematic (correlated) errors, and b are the random (uncorrelated) errors), we find that the correlated error term a = 0.6 ppm and the uncorrelated error term b = 1.7 ppm for GOSAT and a = 1.0 ppm, b = 1.4 ppm for SCIAMACHY regional averages. Biases at individual stations have year-to-year variability of ~ 0.3 ppm, with biases larger than the TCCON predicted bias uncertainty of 0.4 ppm at many stations. Using fitting software, we find that GOSAT underpredicts the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46–53° N. In the Southern Hemisphere (SH), CT2013b underestimates the seasonal cycle amplitude. Biases are calculated for 3-month intervals and indicate the months that contribute to the observed amplitude differences. The seasonal cycle phase indicates whether a dataset or model lags another dataset in time. We calculate this at a subset of stations where there is adequate satellite data, and find that the GOSAT retrieved phase improves substantially over the prior and the SCIAMACHY retrieved phase improves substantially for 2 of 7 sites. The models reproduce the measured seasonal cycle phase well except for at Lauder125 (CT2013b), Darwin (MACC), and Izana (+ 10 days, CT2013b), as for Bremen and Four Corners, which are highly influenced by local effects. We compare the variability within one day between TCCON and models in JJA; there is correlation between 0.2 and 0.8 in the NH, with models showing 10–100 % the variability of TCCON at different stations (except Bremen and Four Corners which have no variability compared to TCCON) and CT2013b showing more variability than MACC. This paper highlights findings that provide inputs to estimate flux errors in model assimilations, and places where models and satellites need further investigation, e.g. the SH for models and 45–67° N for GOSAT.


2015 ◽  
Vol 8 (4) ◽  
pp. 1799-1818 ◽  
Author(s):  
R. A. Scheepmaker ◽  
C. Frankenberg ◽  
N. M. Deutscher ◽  
M. Schneider ◽  
S. Barthlott ◽  
...  

Abstract. Measurements of the atmospheric HDO/H2O ratio help us to better understand the hydrological cycle and improve models to correctly simulate tropospheric humidity and therefore climate change. We present an updated version of the column-averaged HDO/H2O ratio data set from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The data set is extended with 2 additional years, now covering 2003–2007, and is validated against co-located ground-based total column δD measurements from Fourier transform spectrometers (FTS) of the Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC, produced within the framework of the MUSICA project). Even though the time overlap among the available data is not yet ideal, we determined a mean negative bias in SCIAMACHY δD of −35 ± 30‰ compared to TCCON and −69 ± 15‰ compared to MUSICA (the uncertainty indicating the station-to-station standard deviation). The bias shows a latitudinal dependency, being largest (∼ −60 to −80‰) at the highest latitudes and smallest (∼ −20 to −30‰) at the lowest latitudes. We have tested the impact of an offset correction to the SCIAMACHY HDO and H2O columns. This correction leads to a humidity- and latitude-dependent shift in δD and an improvement of the bias by 27‰, although it does not lead to an improved correlation with the FTS measurements nor to a strong reduction of the latitudinal dependency of the bias. The correction might be an improvement for dry, high-altitude areas, such as the Tibetan Plateau and the Andes region. For these areas, however, validation is currently impossible due to a lack of ground stations. The mean standard deviation of single-sounding SCIAMACHY–FTS differences is ∼ 115‰, which is reduced by a factor ∼ 2 when we consider monthly means. When we relax the strict matching of individual measurements and focus on the mean seasonalities using all available FTS data, we find that the correlation coefficients between SCIAMACHY and the FTS networks improve from 0.2 to 0.7–0.8. Certain ground stations show a clear asymmetry in δD during the transition from the dry to the wet season and back, which is also detected by SCIAMACHY. This asymmetry points to a transition in the source region temperature or location of the water vapour and shows the added information that HDO/H2O measurements provide when used in combination with variations in humidity.


2015 ◽  
Vol 15 (22) ◽  
pp. 13023-13040 ◽  
Author(s):  
H. Lindqvist ◽  
C. W. O'Dell ◽  
S. Basu ◽  
H. Boesch ◽  
F. Chevallier ◽  
...  

Abstract. The seasonal cycle accounts for a dominant mode of total column CO2 (XCO2) annual variability and is connected to CO2 uptake and release; it thus represents an important quantity to test the accuracy of the measurements from space. We quantitatively evaluate the XCO2 seasonal cycle of the Greenhouse Gases Observing Satellite (GOSAT) observations from the Atmospheric CO2 Observations from Space (ACOS) retrieval system and compare average regional seasonal cycle features to those directly measured by the Total Carbon Column Observing Network (TCCON). We analyse the mean seasonal cycle amplitude, dates of maximum and minimum XCO2, as well as the regional growth rates in XCO2 through the fitted trend over several years. We find that GOSAT/ACOS captures the seasonal cycle amplitude within 1.0 ppm accuracy compared to TCCON, except in Europe, where the difference exceeds 1.0 ppm at two sites, and the amplitude captured by GOSAT/ACOS is generally shallower compared to TCCON. This bias over Europe is not as large for the other GOSAT retrieval algorithms (NIES v02.21, RemoTeC v2.35, UoL v5.1, and NIES PPDF-S v.02.11), although they have significant biases at other sites. We find that the ACOS bias correction partially explains the shallow amplitude over Europe. The impact of the co-location method and aerosol changes in the ACOS algorithm were also tested and found to be few tenths of a ppm and mostly non-systematic. We find generally good agreement in the date of minimum XCO2 between ACOS and TCCON, but ACOS generally infers a date of maximum XCO2 2–3 weeks later than TCCON. We further analyse the latitudinal dependence of the seasonal cycle amplitude throughout the Northern Hemisphere and compare the dependence to that predicted by current optimized models that assimilate in situ measurements of CO2. In the zonal averages, models are consistent with the GOSAT amplitude to within 1.4 ppm, depending on the model and latitude. We also show that the seasonal cycle of XCO2 depends on longitude especially at the mid-latitudes: the amplitude of GOSAT XCO2 doubles from western USA to East Asia at 45–50° N, which is only partially shown by the models. In general, we find that model-to-model differences can be larger than GOSAT-to-model differences. These results suggest that GOSAT/ACOS retrievals of the XCO2 seasonal cycle may be sufficiently accurate to evaluate land surface models in regions with significant discrepancies between the models.


2015 ◽  
Vol 15 (12) ◽  
pp. 16461-16503 ◽  
Author(s):  
H. Lindqvist ◽  
C. W. O'Dell ◽  
S. Basu ◽  
H. Boesch ◽  
F. Chevallier ◽  
...  

Abstract. The seasonal cycle accounts for a dominant mode of total column CO2 (XCO2) annual variability and is connected to CO2 uptake and release; it thus represents an important variable to accurately measure from space. We quantitatively evaluate the XCO2 seasonal cycle of the Greenhouse Gases Observing Satellite (GOSAT) observations from the Atmospheric CO2 Observations from Space (ACOS) retrieval system, and compare average regional seasonal cycle features to those directly measured by the Total Carbon Column Observing Network (TCCON). We analyze the mean seasonal cycle amplitude, dates of maximum and minimum XCO2, as well as the regional growth rates in XCO2 through the fitted trend over several years. We find that GOSAT generally captures the seasonal cycle amplitude within 1.0 ppm accuracy compared to TCCON, except in Europe, where the difference exceeds 1.0 ppm at two sites, and the amplitude captured by GOSAT is generally shallower compared to TCCON. This bias over Europe is not as large for the other GOSAT retrieval algorithms (NIES v02.21, RemoTeC v2.35, UoL v5.1, and NIES PPDF-S v.02.11), although they have significant biases at other sites. The ACOS bias correction was found to partially explain the shallow amplitude over Europe. The impact of the TCCON retrieval version, co-location method, and aerosol changes in the ACOS algorithm were also tested, and found to be few tenths-of-a-ppm and mostly non-systematic. We find generally good agreement in the date of minimum XCO2 between ACOS and TCCON, but ACOS generally infers a date of maximum XCO2 2–3 weeks later than TCCON. We further analyze the latitudinal dependence of the seasonal cycle amplitude throughout the Northern Hemisphere, and compare the dependence to that predicted by current optimized models that assimilate in-situ measurements of CO2. In the zonal averages, GOSAT agrees with the models to within 1.4 ppm, depending on the model and latitude. We also show that the seasonal cycle of XCO2 depends on longitude especially at the mid-latitudes: the amplitude of GOSAT XCO2 doubles from West US to East Asia at 45–50° N, which is only partially shown by the models. In general, we find that model-to-model differences can be larger than GOSAT-to-model differences. These results suggest that GOSAT retrievals of the XCO2 seasonal cycle may be sufficiently accurate to evaluate land surface models in regions with significant discrepancies between the models.


2014 ◽  
Vol 7 (4) ◽  
pp. 5447-5464 ◽  
Author(s):  
S. Tilmes ◽  
M. J. Mills ◽  
U. Niemeier ◽  
H. Schmidt ◽  
A. Robock ◽  
...  

Abstract. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmospheric composition, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulphur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO2 year−1. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of two years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the significance of the impact of geoengineering and the abrupt termination after 50 years on climate and composition of the atmosphere in a changing environment. The zonal and monthly mean stratospheric aerosol input dataset is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.


2016 ◽  
Vol 9 (2) ◽  
pp. 577-585 ◽  
Author(s):  
Matthias Buschmann ◽  
Nicholas M. Deutscher ◽  
Vanessa Sherlock ◽  
Mathias Palm ◽  
Thorsten Warneke ◽  
...  

Abstract. High-resolution solar absorption spectra, taken within the Network for the Detection of Atmospheric Composition Change Infrared Working Group (NDACC-IRWG) in the mid-infrared spectral region, are used to infer partial or total column abundances of many gases. In this paper we present the retrieval of a column-averaged mole fraction of carbon dioxide from NDACC-IRWG spectra taken with a Fourier transform infrared (FTIR) spectrometer at the site in Ny-Ålesund, Spitsbergen. The retrieved time series is compared to colocated standard TCCON (Total Carbon Column Observing Network) measurements of column-averaged dry-air mole fractions of CO2 (denoted by xCO2). Comparing the NDACC and TCCON retrievals, we find that the sensitivity of the NDACC retrieval is lower in the troposphere (by a factor of 2) and higher in the stratosphere, compared to TCCON. Thus, the NDACC retrieval is less sensitive to tropospheric changes (e.g., the seasonal cycle) in the column average.


2020 ◽  
Vol 20 (6) ◽  
pp. 3809-3840 ◽  
Author(s):  
Clara Orbe ◽  
David A. Plummer ◽  
Darryn W. Waugh ◽  
Huang Yang ◽  
Patrick Jöckel ◽  
...  

Abstract. We provide an overview of the REF-C1SD specified-dynamics experiment that was conducted as part of phase 1 of the Chemistry-Climate Model Initiative (CCMI). The REF-C1SD experiment, which consisted of mainly nudged general circulation models (GCMs) constrained with (re)analysis fields, was designed to examine the influence of the large-scale circulation on past trends in atmospheric composition. The REF-C1SD simulations were produced across various model frameworks and are evaluated in terms of how well they represent different measures of the dynamical and transport circulations. In the troposphere there are large (∼40 %) differences in the climatological mean distributions, seasonal cycle amplitude, and trends of the meridional and vertical winds. In the stratosphere there are similarly large (∼50 %) differences in the magnitude, trends and seasonal cycle amplitude of the transformed Eulerian mean circulation and among various chemical and idealized tracers. At the same time, interannual variations in nearly all quantities are very well represented, compared to the underlying reanalyses. We show that the differences in magnitude, trends and seasonal cycle are not related to the use of different reanalysis products; rather, we show they are associated with how the simulations were implemented, by which we refer both to how the large-scale flow was prescribed and to biases in the underlying free-running models. In most cases these differences are shown to be as large or even larger than the differences exhibited by free-running simulations produced using the exact same models, which are also shown to be more dynamically consistent. Overall, our results suggest that care must be taken when using specified-dynamics simulations to examine the influence of large-scale dynamics on composition.


2016 ◽  
Vol 16 (4) ◽  
pp. 1937-1953 ◽  
Author(s):  
Gregory R. Wentworth ◽  
Jennifer G. Murphy ◽  
Betty Croft ◽  
Randall V. Martin ◽  
Jeffrey R. Pierce ◽  
...  

Abstract. Continuous hourly measurements of gas-phase ammonia (NH3(g)) were taken from 13 July to 7 August 2014 on a research cruise throughout Baffin Bay and the eastern Canadian Arctic Archipelago. Concentrations ranged from 30 to 650 ng m−3 (40–870 pptv) with the highest values recorded in Lancaster Sound (74°13′ N, 84°00′ W). Simultaneous measurements of total ammonium ([NHx]), pH and temperature in the ocean and in melt ponds were used to compute the compensation point (χ), which is the ambient NH3(g) concentration at which surface–air fluxes change direction. Ambient NH3(g) was usually several orders of magnitude larger than both χocean and χMP (< 0.4–10 ng m3) indicating these surface pools are net sinks of NH3. Flux calculations estimate average net downward fluxes of 1.4 and 1.1 ng m−2 s−1 for the open ocean and melt ponds, respectively. Sufficient NH3(g) was present to neutralize non-sea-salt sulfate (nss-SO42−) in the boundary layer during most of the study. This finding was corroborated with a historical data set of PM2.5 composition from Alert, Nunavut (82°30′ N, 62°20′ W) wherein the median ratio of NH4+/nss-SO42− equivalents was greater than 0.75 in June, July and August. The GEOS-Chem chemical transport model was employed to examine the impact of NH3(g) emissions from seabird guano on boundary-layer composition and nss-SO42− neutralization. A GEOS-Chem simulation without seabird emissions underestimated boundary layer NH3(g) by several orders of magnitude and yielded highly acidic aerosol. A simulation that included seabird NH3 emissions was in better agreement with observations for both NH3(g) concentrations and nss-SO42− neutralization. This is strong evidence that seabird colonies are significant sources of NH3 in the summertime Arctic, and are ubiquitous enough to impact atmospheric composition across the entire Baffin Bay region. Large wildfires in the Northwest Territories were likely an important source of NH3, but their influence was probably limited to the Central Canadian Arctic. Implications of seabird-derived N-deposition to terrestrial and aquatic ecosystems are also discussed.


2012 ◽  
Vol 5 (1) ◽  
pp. 1355-1379
Author(s):  
F. Forster ◽  
R. Sussmann ◽  
M. Rettinger ◽  
N. M. Deutscher ◽  
D. W. T. Griffith ◽  
...  

Abstract. We present the intercalibration of dry-air column-averaged mole fractions of methane (XCH4) retrieved from solar FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC) in the mid-infrared (MIR) versus near-infrared (NIR) soundings from the Total Carbon Column Observing Network (TCCON). The study uses multi-annual quasi-coincident MIR and NIR measurements from the stations Garmisch, Germany (47.48° N, 11.06° E, 743 m a.s.l.) and Wollongong, Australia (34.41° S, 150.88° E, 30 m a.s.l.). Direct comparison of the retrieved MIR and NIR time series shows a phase shift in XCH4 seasonality, i.e. a significant time-dependent bias leading to a standard deviation (stdv) of the difference time series (NIR-MIR) of 8.4 ppb. After eliminating differences in a prioris by using ACTM-simulated profiles as a common prior, the seasonalities of the (corrected) MIR and NIR time series agree within the noise (stdv = 5.2 ppb for the difference time series). The difference time series (NIR-MIR) do not show a significant trend. Therefore it is possible to use a simple scaling factor for the intercalibration without a time-dependent linear or seasonal component. Using the Garmisch and Wollongong data together, we obtain an overall calibration factor MIR/NIR = 0.9926(18). The individual calibration factors per station are 0.9940(14) for Garmisch and 0.9893(40) for Wollongong. They agree within their error bars with the overall calibration factor which can therefore be used for both stations. Our results suggest that after applying the proposed intercalibration concept to all stations performing both NIR and MIR measurements, it should be possible to obtain one refined overall intercalibration factor for the two networks. This would allow to set up a harmonized NDACC and TCCON XCH4 data set which can be exploited for joint trend studies, satellite validation, or the inverse modeling of sources and sinks.


2018 ◽  
Vol 62 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Steven Gutteridge

A convergence of global factors is adding to the difficulties of securing a sustainable supply of food and feed to support the increasing global population. The positive impact of the rise in atmospheric CO2 on photosynthesis is more than offset by the increase in average global temperatures accompanying the change in atmospheric composition. This article provides a brief overview of how these adverse events affect some of the critical molecular processes of the chloroplast and by extension how this impacts the yields of the major crops. Although the tools are available to introduce genetic elements in most crops that will mitigate these adverse factors, the time needed to validate and optimize these traits can be extensive. There is a major concern that at the current rate of change to atmospheric composition and the accompanying rise in temperature the benefits of these traits may be rendered less effective soon after their introduction.


Sign in / Sign up

Export Citation Format

Share Document