scholarly journals Airborne intercomparison of HO<sub>x</sub> measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS

2012 ◽  
Vol 5 (2) ◽  
pp. 2529-2565 ◽  
Author(s):  
X. Ren ◽  
J. Mao ◽  
W. H. Brune ◽  
C. A. Cantrell ◽  
R. L. Mauldin III ◽  
...  

Abstract. The hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively called HOx, play central roles in tropospheric chemistry. Accurate measurements of OH and HO2 are critical to examine our understanding of atmospheric chemistry. Intercomparisons of different techniques for detecting OH and HO2 are vital to evaluate their measurement capabilities. Three instruments that measured OH and/or HO2 radicals were deployed on the NASA DC-8 aircraft throughout Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), in the spring and summer of 2008. One instrument was the Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) for OH and HO2 measurements based on Laser-Induced Fluorescence (LIF) spectroscopy. A second instrument was the NCAR Selected-Ion Chemical Ionization Mass Spectrometer (SI-CIMS) for OH measurement. A third instrument was the NCAR Peroxy Radical Chemical Ionization Mass Spectrometer (PeRCIMS) for HO2 measurement. Formal intercomparison of LIF and CIMS was conducted for the first time on a same aircraft platform. The three instruments were calibrated by quantitative photolysis of water vapor by UV light at 184.9 nm with three different calibration systems. The absolute accuracies were ±32% (2σ) for the LIF instrument, ±65% (2σ) for the SI-CIMS instrument, and ±50% (2σ) for the PeRCIMS instrument. In general, good agreement was obtained between the CIMS and LIF measurements of both OH and HO2 measurements. Linear regression of the entire data set yields [OH]CIMS = 0.89 × [OH]LIF + 2.8 × 105 cm−3 with a correlation coefficient, r2 = 0.72 for OH and [HO2]CIMS = 0.86 × [HO2]LIF + 3.9 parts per trillion by volume (pptv, equivalent to pmol mol−1) with a correlation coefficient, r2 = 0.72 for HO2. In general, the difference between CIMS and LIF instruments for OH and HO2 measurements can be explained by their combined measurement uncertainties. Comparison with box model results shows some similarities for both the CIMS and LIF measurements. First, the observed-to-modeled HO2 ratio increases greatly for higher NO mixing ratios, indicating that the model may not properly account for HOx sources that correlate with NO. Second, the observed-to-modeled OH ratio increases with increasing isoprene mixing ratios, suggesting either incomplete understanding of isoprene chemistry in the model or interferences in the measurements in environments where biogenic emissions dominate ambient volatile organic compounds.

2012 ◽  
Vol 5 (8) ◽  
pp. 2025-2037 ◽  
Author(s):  
X. Ren ◽  
J. Mao ◽  
W. H. Brune ◽  
C. A. Cantrell ◽  
R. L. Mauldin III ◽  
...  

Abstract. The hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively called HOx, play central roles in tropospheric chemistry. Accurate measurements of OH and HO2 are critical to examine our understanding of atmospheric chemistry. Intercomparisons of different techniques for detecting OH and HO2 are vital to evaluate their measurement capabilities. Three instruments that measured OH and/or HO2 radicals were deployed on the NASA DC-8 aircraft throughout Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in the spring and summer of 2008. One instrument was the Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) for OH and HO2 measurements based on Laser-Induced Fluorescence (LIF) spectroscopy. A second instrument was the NCAR Selected-Ion Chemical Ionization Mass Spectrometer (SI-CIMS) for OH measurement. A third instrument was the NCAR Peroxy Radical Chemical Ionization Mass Spectrometer (PeRCIMS) for HO2 measurement. Formal intercomparison of LIF and CIMS was conducted for the first time on a same aircraft platform. The three instruments were calibrated by quantitative photolysis of water vapor by ultraviolet (UV) light at 184.9 nm with three different calibration systems. The absolute accuracies were ±32% (2σ) for the LIF instrument, ±65% (2σ) for the SI-CIMS instrument, and ±50% (2σ) for the PeRCIMS instrument. In general, good agreement was obtained between the CIMS and LIF measurements of both OH and HO2 measurements. Linear regression of the entire data set yields [OH]CIMS = 0.89 × [OH]LIF + 2.8 × 104 cm−3 with a correlation coefficient r2 = 0.72 for OH, and [HO2]CIMS = 0.86 × [HO2]LIF + 3.9 parts per trillion by volume (pptv, equivalent to pmol mol−1) with a correlation coefficient r2 = 0.72 for HO2. In general, the difference between CIMS and LIF instruments for OH and HO2 measurements can be explained by their combined measurement uncertainties. Comparison with box model results shows some similarities for both the CIMS and LIF measurements. First, the observed-to-modeled HO2 ratio increases greatly for higher NO mixing ratios, indicating that the model may not properly account for HOx sources that correlate with NO. Second, the observed-to-modeled OH ratio increases with increasing isoprene mixing ratios, suggesting either incomplete understanding of isoprene chemistry in the model or interferences in the measurements in environments where biogenic emissions dominate ambient volatile organic compounds.


2006 ◽  
Vol 23 (8) ◽  
pp. 1104-1113 ◽  
Author(s):  
Kazuyuki Kita ◽  
Yu Morino ◽  
Yutaka Kondo ◽  
Yuichi Komazaki ◽  
Nobuyuki Takegawa ◽  
...  

Abstract A chemical ionization mass spectrometer (CIMS) instrument has been developed for high-precision measurements of gaseous nitric acid (HNO3) specifically under high- and variable-humidity conditions in the boundary layer. The instrument’s background signals (i.e., signals detected when HNO3-free air is measured), which depend on the humidity and HNO3 concentration of the sample air, are the most important factor affecting the limit of detection (LOD). A new system to provide HNO3-free air without changing both the humidity and the pressure of the sampled air was developed to measure the background level accurately. The detection limit was about 23 parts per trillion by volume (pptv) for 50-s averages. Field tests, including an intercomparison with the diffusion scrubber technique, were carried out at a surface site in Tokyo, Japan, in October 2003 and June 2004. A comparison between the measured concentrations of HNO3 and particulate nitrate indicated that the interference from particulate nitrate was not detectable (i.e., less than about 1%). The intercomparison indicated that the two independent measurements of HNO3 agreed to within the combined uncertainties of these measurements. This result demonstrates that the CIMS instrument developed in this study is capable of measuring HNO3 mixing ratios with the precision, accuracy, and time resolution required for atmospheric science.


2010 ◽  
Vol 3 (2) ◽  
pp. 1133-1162 ◽  
Author(s):  
D. R. Benson ◽  
M. Al-Refai ◽  
S.-H. Lee

Abstract. This study describes a chemical ionization mass spectrometer (CIMS) for fast response, in-situ measurements for gas phase ammonia. Protonated ethanol ions were used as the ion-molecule reaction reagent. The CIMS sensitivity was estimated to be between 4–25 Hz/pptv with 30% uncertainty. The instrument background was below 1 ppbv and at lowest was 300 pptv. The uncertainty associated with the instrumental background was less than 30 pptv under the optimized experimental conditions. The time response was less than 30 s, and the detection limit was approximately 60 pptv. This CIMS was used to measure the ambient NH3 in Kent, Ohio, for several weeks throughout three seasons. The measured ammonia mixing ratios were usually at the sub-ppbv level, and higher during the spring (200±120 pptv) than in the winter (60±75 pptv) and fall (150±80 pptv).


2010 ◽  
Vol 3 (4) ◽  
pp. 1075-1087 ◽  
Author(s):  
D. R. Benson ◽  
A. Markovich ◽  
M. Al-Refai ◽  
S.-H. Lee

Abstract. This study presents a chemical ionization mass spectrometer (CIMS) for fast response, in-situ measurements of gas phase ammonia (NH3). The NH3 background level detected with the CIMS ranged between 0.3–1 ppbv, with an uncertainty of 30 pptv under optimized conditions. The instrument sensitivity varied from 4–25 Hz/pptv for >1 MHz of reagent ion signals (protonated ethanol ions), with a 30% uncertainty estimated based on variability in calibration signals. The CIMS detection limit for NH3 was ~60 pptv at a 1 min integration time (3 sigma). The CIMS time response was <30 s. This new NH3-CIMS has been used for ambient measurements in Kent, Ohio, for several weeks throughout three seasons. The measured NH3 mixing ratios were usually at the sub-ppbv level and higher in spring (200 ± 120 pptv) than in winter (60 ± 75 pptv) and fall (150 ± 80 pptv). High emissions of SO2 from power plants in this region, and thus possible high acidity of aerosol particles, may explain these low NH3 mixing ratios in general.


2012 ◽  
Vol 5 (12) ◽  
pp. 3029-3039 ◽  
Author(s):  
M. Le Breton ◽  
M. R. McGillen ◽  
J. B. A. Muller ◽  
A. Bacak ◽  
D. E. Shallcross ◽  
...  

Abstract. The first airborne measurements of formic acid mixing ratios over the United Kingdom were measured on the FAAM BAe-146 research aircraft on 16 March 2010 with a chemical ionization mass spectrometer using I− reagent ions. The I− ionization scheme was able to measure formic acid mixing ratios at 1 Hz in the boundary layer. In-flight standard addition calibrations from a formic acid source were used to determine the instrument sensitivity of 35 ± 6 ion counts pptv−1 s−1 and a limit of detection of 25 pptv. Routine measurements were made through a scrubbed inlet to determine the instrumental background. Three plumes of formic acid were observed over the UK, originating from London, Humberside and Tyneside. The London plume had the highest formic acid mixing ratio throughout the flight, peaking at 358 pptv. No significant correlations of formic acid with NOx and ozone were found, but a positive correlation was observed between CO and HCOOH within the two plumes where coincident data were recorded. A trajectory model was employed to determine the sources of the plumes and compare modelled mixing ratios with measured values. The model underestimated formic acid concentrations by up to a factor of 2. This is explained by missing sources in the model, which were considered to be both primary emissions of formic acid of mainly anthropogenic origin and a lack of precursor emissions, such as isoprene, from biogenic sources, whose oxidation in situ would lead to formic acid formation.


2021 ◽  
Author(s):  
Xiaoxiao Li ◽  
Yuyang Li ◽  
Michael Lawler ◽  
Jiming Hao ◽  
James Smith ◽  
...  

&lt;p&gt;Ultrafine particles (UFPs) dominate the particle number population in the urban atmosphere and revealing their chemical composition is important. The thermal desorption chemical ionization mass spectrometer (TDCIMS) can semi-continuously measure UFP composition at the molecular level. We modified a TDCIMS and deployed it in urban Beijing. Radioactive materials in the TDCIMS for aerosol charging and chemical ionization were replaced by soft X-ray ionizers so that it can be operated in countries with tight regulations on radioactive materials. Protonated N-methyl-2-pyrrolidone ions were used as the positive reagent ion, which selectively detects ammonia and low-molecular weight-aliphatic amines and amides vaporized from the particle phase. With superoxide as the negative reagent ion, a wide range of inorganic and organic compounds were observed, including nitrate, sulfate, aliphatic acids with carbon numbers up to 18, and highly oxygenated CHO, CHON, and CHOS compounds. The latter two can be attributed to parent ions or the decomposition products of organonitrates and organosulfates/organosulfonates, respectively. Components from both primary emissions and secondary formation of UFPs were identified. Compared to the UFPs measured at forest and marine sites, those in urban Beijing contain more nitrogen-containing and sulfur-containing compounds. These observations illustrate unique features of the UFPs in this polluted urban environment and provide insights into their origins.&lt;/p&gt;


2010 ◽  
Vol 3 (5) ◽  
pp. 4313-4354
Author(s):  
A. Roiger ◽  
H. Aufmhoff ◽  
P. Stock ◽  
F. Arnold ◽  
H. Schlager

Abstract. An airborne chemical ionization ion trap mass spectrometer instrument (CI-ITMS) has been developed for tropospheric and stratospheric fast in-situ measurements of PAN (peroxyacetyl nitrate) and PPN (peroxypropionyl nitrate). The first scientific deployment of the FASTPEX instrument (FASTPEX = Fast Measurement of Peroxyacyl nitrates) took place in the Arctic during 18 missions aboard the DLR research aircraft Falcon, within the framework of the POLARCAT-GRACE campaign in the summer of 2008. The FASTPEX instrument is described and characteristic properties of the employed ion trap mass spectrometer are discussed. Atmospheric data obtained at altitudes of up to ~12 km are presented, from the boundary layer to the lowermost stratosphere. Data were sampled with a time resolution of 2 s and a 2σ detection limit of 25 pmol mol−1. An isotopically labelled standard was used for a permanent online calibration. For this reason the accuracy of the PAN measurements is better than ±10% for mixing ratios greater than 200 pmol mol−1. PAN mixing ratios in the summer Arctic troposphere were in the order of a few hundred pmol mol−1 and generally correlated well with CO. In the Arctic boundary layer and lowermost stratosphere smaller PAN mixing ratios were observed due to a combination of missing local sources of PAN precursor gases and efficient removal processes (thermolysis/photolysis). PPN, the second most abundant PAN homologue, was measured simultanously. Observed PPN/PAN ratios range between ~0.03 and 0.3.


2019 ◽  
Author(s):  
Yugo Kanaya ◽  
Kazuyuki Miyazaki ◽  
Fumikazu Taketani ◽  
Takuma Miyakawa ◽  
Hisahiro Takashima ◽  
...  

Abstract. Constraints from ozone (O3) observations over oceans are needed in addition to those from terrestrial regions to fully understand global tropospheric chemistry and its impact on the climate. Here, we provide a large data set of ozone and carbon monoxide (CO) levels observed (for 11 666 and 10 681 h, respectively) over oceans. The data set is derived from observations made during 24 research cruise legs of R/V Mirai during 2012 to 2017, in the Southern, Indian, Pacific, and Arctic Oceans, covering the region from 67° S to 75° N. The data are suitable for critical evaluation of the over-ocean distribution of ozone derived from chemical transport models. We first give an overview of the statistics in the data set and highlight key features in terms of geographical distribution and air mass type. We then use the data set to evaluate ozone concentration fields from Tropospheric Chemistry Reanalysis version 2 (TCR-2), produced by assimilating a suite of satellite observations of multiple species into a chemical transport model, namely CHASER. For long-range transport of polluted air masses from continents to the oceans, during which the effects of forest fires and fossil fuel combustion were recognized, TCR-2 gave an excellent performance in reproducing the observed temporal variations and photochemical buildup of O3 when assessed from ΔO3 / ΔCO ratios. For clean marine conditions with low and stable CO concentrations, two focused analyses were performed. The first was in the Arctic (> 70° N) in September every year from 2013 to 2016; TCR-2 underpredicted O3 levels by 6.7 ppb (21 %) on average. The observed vertical profiles from O3 soundings from R/V Mirai during September 2014 had less steep vertical gradients at low altitudes (> 850 hPa) than those obtained TCR-2. This suggests the possibilities of more efficient descent of the O3-rich air from above or less efficient dry deposition on the surface than were assumed in the model. In the second analysis, over the western Pacific equatorial region (125–165° E, 10° S to 25° N), the observed O3 level frequently decreased to less than 10 ppb in comparison to that obtained with TCR-2, and also those obtained in most of the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) model runs for the decade from 2000. These results imply loss processes that are unaccounted for in the models. We found that the model’s positive bias positively correlated with the daytime residence times of air masses over a particular grid, namely 165–180° E and 15–30° N; an additional loss rate of 0.25 ppb h−1 in the grid best explained the gap. Halogen chemistry, which is commonly omitted from currently used models, might be active in this region and could have contributed to additional losses. Our open data set covering wide ocean regions is complementary to the Tropospheric Ozone Assessment Report data set, which basically comprises ground-based observations, and enables a fully global study of the behavior of O3.


2008 ◽  
Vol 8 (4) ◽  
pp. 14033-14085 ◽  
Author(s):  
D. Taraborrelli ◽  
M. G. Lawrence ◽  
T. M. Butler ◽  
R. Sander ◽  
J. Lelieveld

Abstract. We present an oxidation mechanism of intermediate size for isoprene (2-methyl-1,3-butadiene) suitable for simulations in regional and global atmospheric chemistry models, which we call MIM2. It is a reduction of the corresponding detailed mechanism in the Master Chemical Mechanism (MCM v3.1) and intended as the second version of the well-established Mainz Isoprene Mechanism (MIM). Our aim is to improve the representation of tropospheric chemistry in regional and global models under all NOx regimes. We evaluate MIM2 and re-evaluate MIM through comparisons with MCM v3.1. We find that MIM and MIM2 compute similar O3, OH and isoprene mixing ratios. Unlike MIM, MIM2 produces small relative biases for NOx and organic nitrogen-containing species due to a good representation of the alkyl and peroxy acyl nitrates (RONO2 and RC(O)OONO2). Moreover, MIM2 computes only small relative biases with respect to hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), methanol (CH3OH), formaldehyde (HCHO), peroxy acetyl nitrate (PAN), and formic and acetic acids (HCOOH and CH3C(O)OH), being always below ≈6% in all NOx scenarios studied. Most of the isoprene oxidation products are represented explicitly, including methyl vinyl ketone (MVK), methacrolein (MACR), hydroxyacetone and methyl glyoxal. MIM2 is mass-conserving with respect to carbon, including CO2 as well. Therefore, it is suitable for studies assessing carbon monoxide (CO) from biogenic sources, as well as for studies focused on the carbon cycle. Compared to MIM, MIM2 considers new species like acetaldehyde (CH3CHO), propene (CH2=CHCH3) and glyoxal (CHOCHO) with global chemical production rates for the year 2005 of 7.3, 9.5 and 33.8 Tg/yr, respectively. Our new mechanism is expected to substantially improve the results of atmospheric chemistry models by more accurately representing the interplay between atmospheric chemistry, transport and deposition, especially of nitrogen reservoir species. MIM2 allows regional and global models to easily incorporate new experimental results on the chemistry of organic species.


Sign in / Sign up

Export Citation Format

Share Document