scholarly journals A Chemical Ionization Mass Spectrometer for ambient measurements of Ammonia

2010 ◽  
Vol 3 (4) ◽  
pp. 1075-1087 ◽  
Author(s):  
D. R. Benson ◽  
A. Markovich ◽  
M. Al-Refai ◽  
S.-H. Lee

Abstract. This study presents a chemical ionization mass spectrometer (CIMS) for fast response, in-situ measurements of gas phase ammonia (NH3). The NH3 background level detected with the CIMS ranged between 0.3–1 ppbv, with an uncertainty of 30 pptv under optimized conditions. The instrument sensitivity varied from 4–25 Hz/pptv for >1 MHz of reagent ion signals (protonated ethanol ions), with a 30% uncertainty estimated based on variability in calibration signals. The CIMS detection limit for NH3 was ~60 pptv at a 1 min integration time (3 sigma). The CIMS time response was <30 s. This new NH3-CIMS has been used for ambient measurements in Kent, Ohio, for several weeks throughout three seasons. The measured NH3 mixing ratios were usually at the sub-ppbv level and higher in spring (200 ± 120 pptv) than in winter (60 ± 75 pptv) and fall (150 ± 80 pptv). High emissions of SO2 from power plants in this region, and thus possible high acidity of aerosol particles, may explain these low NH3 mixing ratios in general.

2010 ◽  
Vol 3 (2) ◽  
pp. 1133-1162 ◽  
Author(s):  
D. R. Benson ◽  
M. Al-Refai ◽  
S.-H. Lee

Abstract. This study describes a chemical ionization mass spectrometer (CIMS) for fast response, in-situ measurements for gas phase ammonia. Protonated ethanol ions were used as the ion-molecule reaction reagent. The CIMS sensitivity was estimated to be between 4–25 Hz/pptv with 30% uncertainty. The instrument background was below 1 ppbv and at lowest was 300 pptv. The uncertainty associated with the instrumental background was less than 30 pptv under the optimized experimental conditions. The time response was less than 30 s, and the detection limit was approximately 60 pptv. This CIMS was used to measure the ambient NH3 in Kent, Ohio, for several weeks throughout three seasons. The measured ammonia mixing ratios were usually at the sub-ppbv level, and higher during the spring (200±120 pptv) than in the winter (60±75 pptv) and fall (150±80 pptv).


2006 ◽  
Vol 23 (8) ◽  
pp. 1104-1113 ◽  
Author(s):  
Kazuyuki Kita ◽  
Yu Morino ◽  
Yutaka Kondo ◽  
Yuichi Komazaki ◽  
Nobuyuki Takegawa ◽  
...  

Abstract A chemical ionization mass spectrometer (CIMS) instrument has been developed for high-precision measurements of gaseous nitric acid (HNO3) specifically under high- and variable-humidity conditions in the boundary layer. The instrument’s background signals (i.e., signals detected when HNO3-free air is measured), which depend on the humidity and HNO3 concentration of the sample air, are the most important factor affecting the limit of detection (LOD). A new system to provide HNO3-free air without changing both the humidity and the pressure of the sampled air was developed to measure the background level accurately. The detection limit was about 23 parts per trillion by volume (pptv) for 50-s averages. Field tests, including an intercomparison with the diffusion scrubber technique, were carried out at a surface site in Tokyo, Japan, in October 2003 and June 2004. A comparison between the measured concentrations of HNO3 and particulate nitrate indicated that the interference from particulate nitrate was not detectable (i.e., less than about 1%). The intercomparison indicated that the two independent measurements of HNO3 agreed to within the combined uncertainties of these measurements. This result demonstrates that the CIMS instrument developed in this study is capable of measuring HNO3 mixing ratios with the precision, accuracy, and time resolution required for atmospheric science.


2016 ◽  
Author(s):  
Lei Yao ◽  
Ming-Yi Wang ◽  
Xin-Ke Wang ◽  
Yi-Jun Liu ◽  
Hang-Fei Chen ◽  
...  

Abstract. Amines and amides are important atmospheric organic-nitrogen compounds but high time resolution, highly sensitive, and simultaneous ambient measurements of these species are rather sparse. Here, we present the development of a high resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) method utilizing protonated ethanol as reagent ions to simultaneously detect atmospheric gaseous amines (C1 to C6) and amides (C1 to C6). This method possesses sensitivities of 5.6–19.4 Hz pptv−1 for amines and 3.8–38.0 Hz pptv−1 for amides under total reagent ion signals of ~ 0.32 MHz, and detection limits of 0.10–0.50 pptv for amines and 0.29–1.95 pptv for amides at 3σ of the background signal for a 1-min integration time, respectively. Controlled characterization in the laboratory indicates that relative humidity has significant influences on detection of amines and amides, whereas the presence of organics has no obvious effects. Ambient measurements of amines and amides utilizing this method were conducted from 25 July 2015 to 25 August 2015 in urban Shanghai, China. While the concentrations of amines ranged from a few pptv to hundreds of pptv, concentrations of amides varied from tens of pptv to a few ppbv. Among the C1- to C6-amines, the C2-amines were the dominant species with concentrations up to 130 pptv. For amides, the C3-amides (up to 8.7 ppb) were the most abundant species. The diurnal profiles of amines and amides suggest that in addition to the secondary formation of amides in the atmosphere, industrial emissions could be important sources of amides in urban Shanghai. During the campaign, photo-oxidation of amines and amides might be a main loss pathway for them in day time, and wet deposition was also an important sink.


2016 ◽  
Vol 16 (22) ◽  
pp. 14527-14543 ◽  
Author(s):  
Lei Yao ◽  
Ming-Yi Wang ◽  
Xin-Ke Wang ◽  
Yi-Jun Liu ◽  
Hang-Fei Chen ◽  
...  

Abstract. Amines and amides are important atmospheric organic-nitrogen compounds but high time resolution, highly sensitive, and simultaneous ambient measurements of these species are rather sparse. Here, we present the development of a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) method, utilizing protonated ethanol as reagent ions to simultaneously detect atmospheric gaseous amines (C1 to C6) and amides (C1 to C6). This method possesses sensitivities of 5.6–19.4 Hz pptv−1 for amines and 3.8–38.0 Hz pptv−1 for amides under total reagent ion signals of  ∼  0.32 MHz. Meanwhile, the detection limits were 0.10–0.50 pptv for amines and 0.29–1.95 pptv for amides at 3σ of the background signal for a 1 min integration time. Controlled characterization in the laboratory indicates that relative humidity has significant influences on the detection of amines and amides, whereas the presence of organics has no obvious effects. Ambient measurements of amines and amides utilizing this method were conducted from 25 July to 25 August 2015 in urban Shanghai, China. While the concentrations of amines ranged from a few parts per trillion by volume to hundreds of parts per trillion by volume, concentrations of amides varied from tens of parts per trillion by volume to a few parts per billion by volume. Among the C1- to C6-amines, the C2-amines were the dominant species with concentrations up to 130 pptv. For amides, the C3-amides (up to 8.7 ppb) were the most abundant species. The diurnal and backward trajectory analysis profiles of amides suggest that in addition to the secondary formation of amides in the atmosphere, industrial emissions could be important sources of amides in urban Shanghai. During the campaign, photo-oxidation of amines and amides might be a main loss pathway for them in daytime, and wet deposition was also an important sink.


2016 ◽  
Vol 9 (8) ◽  
pp. 3851-3861 ◽  
Author(s):  
Javier Sanchez ◽  
David J. Tanner ◽  
Dexian Chen ◽  
L. Gregory Huey ◽  
Nga L. Ng

Abstract. Hydroperoxy radicals (HO2) play an important part in tropospheric photochemistry, yet photochemical models do not capture ambient HO2 mixing ratios consistently. This is likely due to a combination of uncharacterized chemical pathways and measurement limitations. The indirect nature of current HO2 measurements introduces challenges in accurately measuring HO2; therefore a direct technique would help constrain HOx chemistry in the atmosphere. In this work we evaluate the feasibility of using chemical ionization mass spectrometry (CIMS) and propose a direct HO2 detection scheme using bromide as a reagent ion. Ambient observations were made with a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) in Atlanta over the month of June 2015 to demonstrate the capability of this direct measurement technique. Observations displayed expected diurnal profiles, reaching daytime median values of ∼ 5 ppt between 2 and 3 p.m. local time. The HO2 diurnal profile was found to be influenced by morning-time vehicular NOx emissions and shows a slow decrease into the evening, likely from non-photolytic production, among other factors. Measurement sensitivities of approximately 5.1 ± 1.0 cps ppt−1 for a bromide ion (79Br−) count rate of 106 cps were observed. The relatively low instrument background allowed for a 3σ lower detection limit of 0.7 ppt for a 1 min integration time. Mass spectra of ambient measurements showed the 79BrHO2− peak was the major component of the signal at nominal mass-to-charge 112, suggesting high selectivity for HO2 at this mass-to-charge. More importantly, this demonstrates that these measurements can be achieved using instruments with only unit mass resolution capability.


2012 ◽  
Vol 5 (12) ◽  
pp. 3029-3039 ◽  
Author(s):  
M. Le Breton ◽  
M. R. McGillen ◽  
J. B. A. Muller ◽  
A. Bacak ◽  
D. E. Shallcross ◽  
...  

Abstract. The first airborne measurements of formic acid mixing ratios over the United Kingdom were measured on the FAAM BAe-146 research aircraft on 16 March 2010 with a chemical ionization mass spectrometer using I− reagent ions. The I− ionization scheme was able to measure formic acid mixing ratios at 1 Hz in the boundary layer. In-flight standard addition calibrations from a formic acid source were used to determine the instrument sensitivity of 35 ± 6 ion counts pptv−1 s−1 and a limit of detection of 25 pptv. Routine measurements were made through a scrubbed inlet to determine the instrumental background. Three plumes of formic acid were observed over the UK, originating from London, Humberside and Tyneside. The London plume had the highest formic acid mixing ratio throughout the flight, peaking at 358 pptv. No significant correlations of formic acid with NOx and ozone were found, but a positive correlation was observed between CO and HCOOH within the two plumes where coincident data were recorded. A trajectory model was employed to determine the sources of the plumes and compare modelled mixing ratios with measured values. The model underestimated formic acid concentrations by up to a factor of 2. This is explained by missing sources in the model, which were considered to be both primary emissions of formic acid of mainly anthropogenic origin and a lack of precursor emissions, such as isoprene, from biogenic sources, whose oxidation in situ would lead to formic acid formation.


2016 ◽  
Vol 9 (5) ◽  
pp. 2135-2145 ◽  
Author(s):  
Mario Simon ◽  
Martin Heinritzi ◽  
Stephan Herzog ◽  
Markus Leiminger ◽  
Federico Bianchi ◽  
...  

Abstract. Amines are potentially important for atmospheric new particle formation, but their concentrations are usually low with typical mixing ratios in the pptv range or even smaller. Therefore, the demand for highly sensitive gas-phase amine measurements has emerged in the last several years. Nitrate chemical ionization mass spectrometry (CIMS) is routinely used for the measurement of gas-phase sulfuric acid in the sub-pptv range. Furthermore, extremely low volatile organic compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine (DMA, (CH3)2NH) using the NO3−•(HNO3)1 − 2• (DMA) cluster ion signal. Calibration measurements were made at the CLOUD chamber during two different measurement campaigns. Good linearity between 0 and  ∼  120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38 % RH.


2012 ◽  
Vol 5 (2) ◽  
pp. 2529-2565 ◽  
Author(s):  
X. Ren ◽  
J. Mao ◽  
W. H. Brune ◽  
C. A. Cantrell ◽  
R. L. Mauldin III ◽  
...  

Abstract. The hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively called HOx, play central roles in tropospheric chemistry. Accurate measurements of OH and HO2 are critical to examine our understanding of atmospheric chemistry. Intercomparisons of different techniques for detecting OH and HO2 are vital to evaluate their measurement capabilities. Three instruments that measured OH and/or HO2 radicals were deployed on the NASA DC-8 aircraft throughout Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), in the spring and summer of 2008. One instrument was the Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) for OH and HO2 measurements based on Laser-Induced Fluorescence (LIF) spectroscopy. A second instrument was the NCAR Selected-Ion Chemical Ionization Mass Spectrometer (SI-CIMS) for OH measurement. A third instrument was the NCAR Peroxy Radical Chemical Ionization Mass Spectrometer (PeRCIMS) for HO2 measurement. Formal intercomparison of LIF and CIMS was conducted for the first time on a same aircraft platform. The three instruments were calibrated by quantitative photolysis of water vapor by UV light at 184.9 nm with three different calibration systems. The absolute accuracies were ±32% (2σ) for the LIF instrument, ±65% (2σ) for the SI-CIMS instrument, and ±50% (2σ) for the PeRCIMS instrument. In general, good agreement was obtained between the CIMS and LIF measurements of both OH and HO2 measurements. Linear regression of the entire data set yields [OH]CIMS = 0.89 × [OH]LIF + 2.8 × 105 cm−3 with a correlation coefficient, r2 = 0.72 for OH and [HO2]CIMS = 0.86 × [HO2]LIF + 3.9 parts per trillion by volume (pptv, equivalent to pmol mol−1) with a correlation coefficient, r2 = 0.72 for HO2. In general, the difference between CIMS and LIF instruments for OH and HO2 measurements can be explained by their combined measurement uncertainties. Comparison with box model results shows some similarities for both the CIMS and LIF measurements. First, the observed-to-modeled HO2 ratio increases greatly for higher NO mixing ratios, indicating that the model may not properly account for HOx sources that correlate with NO. Second, the observed-to-modeled OH ratio increases with increasing isoprene mixing ratios, suggesting either incomplete understanding of isoprene chemistry in the model or interferences in the measurements in environments where biogenic emissions dominate ambient volatile organic compounds.


2014 ◽  
Vol 14 (11) ◽  
pp. 16411-16450 ◽  
Author(s):  
Y. You ◽  
V. P. Kanawade ◽  
J. A. de Gouw ◽  
A. B. Guenther ◽  
S. Madronich ◽  
...  

Abstract. We report ambient measurements of amines and ammonia with a~fast response chemical ionization mass spectrometer (CIMS) in a southeastern US forest in Alabama and a~moderately polluted Midwestern site during the summer. In the Alabama forest, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected on a daily basis. C3-amines and ammonia showed similar diurnal trends and temperature and wind direction dependences, and were not associated with transported CO and SO2 plumes. Consistent with temperature dependences, amine and ammonia in the gas and aerosol phases showed opposite diurnal trends, indicating gas-to-particle partitioning of amines and ammonia. Temperature dependences also imply reversible processes of amines and ammonia evaporation from soil surfaces in daytime and deposition of amines and ammonia to soil surfaces at nighttime. Various amines (C1–C6) at the pptv level were observed in the transported biomass burning plumes, showing that biomass burning can be a substantial source of amines in the Southeast US. At the moderately polluted Kent site, higher concentrations of amines (C1–C6, from pptv to tens of pptv) and ammonia (up to 6 ppbv) were detected. Diurnal variations of C1- to C3-amines and ammonia were correlated with the ambient temperature. C4- to C6-amines showed abrupt increases during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Lower amine concentrations at the rural forested site highlight the importance of constraining anthropogenic sources of amines.


Sign in / Sign up

Export Citation Format

Share Document