scholarly journals FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations

2014 ◽  
Vol 7 (5) ◽  
pp. 4909-4947 ◽  
Author(s):  
C. K. Carbajal Henken ◽  
R. Lindstrot ◽  
R. Preusker ◽  
J. Fischer

Abstract. A newly developed daytime cloud property retrieval algorithm FAME-C (Freie Universität Berlin AATSR MERIS Cloud) is presented. Synergistic observations from AATSR and MERIS, both mounted on the polar orbiting satellite ENVISAT, are used for cloud screening. For cloudy pixels two main steps are carried out in a sequential form. First, a micro-physical cloud property retrieval is performed using an AATSR near-infrared and visible channel. Cloud phase, cloud optical thickness, and effective radius are retrieved, and subsequently cloud water path is computed. Second, two independent cloud top height products are retrieved. For cloud top temperature AATSR brightness temperatures are used, while for cloud top pressure the MERIS oxygen-A absorption channel is used. Results from the micro-physical retrieval serve as input for the two cloud top height retrievals. Introduced are the AATSR and MERIS forward models and auxiliary data needed in FAME-C. Also, the optimal estimation method with uncertainty estimates, which also provides for uncertainty estimated of the retrieved property on a pixel-basis, is presented. Within the frame of the ESA Climate Change Initiative project first global cloud property retrievals have been conducted for the years 2007–2009. For this time period verification efforts are presented comparing FAME-C cloud micro-physical properties to MODIS-TERRA derived cloud micro-physical properties for four selected regions on the globe. The results show reasonable accuracies between the cloud micro-physical retrievals. Biases are generally smallest for marine stratocumulus clouds; −0.28, 0.41μm and −0.18 g m−2 for cloud optical thickness, effective radius and cloud water path, respectively. This is also true for the root mean square error. Also, both cloud top height products are compared to cloud top heights derived from ground-based cloud radars located at several ARM sites. FAME-C mostly shows an underestimation of cloud top heights when compared to radar observations, which is partly attributed to the difficulty of accurate cloud property retrievals for optically thin clouds and multi-layer clouds. The bias is smallest, −0.9 km, for AATSR derived cloud top heights for single-layer clouds.

2014 ◽  
Vol 7 (11) ◽  
pp. 3873-3890 ◽  
Author(s):  
C. K. Carbajal Henken ◽  
R. Lindstrot ◽  
R. Preusker ◽  
J. Fischer

Abstract. A newly developed daytime cloud property retrieval algorithm, FAME-C (Freie Universität Berlin AATSR MERIS Cloud), is presented. Synergistic observations from the Advanced Along-Track Scanning Radiometer (AATSR) and the Medium Resolution Imaging Spectrometer (MERIS), both mounted on the polar-orbiting Environmental Satellite (Envisat), are used for cloud screening. For cloudy pixels two main steps are carried out in a sequential form. First, a cloud optical and microphysical property retrieval is performed using an AATSR near-infrared and visible channel. Cloud phase, cloud optical thickness, and effective radius are retrieved, and subsequently cloud water path is computed. Second, two cloud top height products are retrieved based on independent techniques. For cloud top temperature, measurements in the AATSR infrared channels are used, while for cloud top pressure, measurements in the MERIS oxygen-A absorption channel are used. Results from the cloud optical and microphysical property retrieval serve as input for the two cloud top height retrievals. Introduced here are the AATSR and MERIS forward models and auxiliary data needed in FAME-C. Also, the optimal estimation method, which provides uncertainty estimates of the retrieved property on a pixel basis, is presented. Within the frame of the European Space Agency (ESA) Climate Change Initiative (CCI) project, the first global cloud property retrievals have been conducted for the years 2007–2009. For this time period, verification efforts are presented, comparing, for four selected regions around the globe, FAME-C cloud optical and microphysical properties to cloud optical and microphysical properties derived from measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite. The results show a reasonable agreement between the cloud optical and microphysical property retrievals. Biases are generally smallest for marine stratocumulus clouds: −0.28, 0.41 μm and −0.18 g m−2 for cloud optical thickness, effective radius and cloud water path, respectively. This is also true for the root-mean-square deviation. Furthermore, both cloud top height products are compared to cloud top heights derived from ground-based cloud radars located at several Atmospheric Radiation Measurement (ARM) sites. FAME-C mostly shows an underestimation of cloud top heights when compared to radar observations. The lowest bias of −0.3 km is found for AATSR cloud top heights for single-layer clouds, while the highest bias of −3.0 km is found for AATSR cloud top heights for multilayer clouds. Variability is low for MERIS cloud top heights for low-level clouds, and high for MERIS cloud top heights for mid-level and high-level single-layer clouds, as well as for both AATSR and MERIS cloud top heights for multilayer clouds.


2020 ◽  
Author(s):  
Andrew M. Dzambo ◽  
Tristan L'Ecuyer ◽  
Kenneth Sinclair ◽  
Bastiaan van Diedenhoven ◽  
Siddhant Gupta ◽  
...  

Abstract. This study presents a new algorithm that combines W-band reflectivity measurements from the Airborne Precipitation Radar-3rd generation (APR-3), passive radiometric cloud optical depth and effective radius retrievals from the Research Scanning Polarimeter (RSP) to estimate total liquid water path in warm clouds and identify the contributions from cloud water path (CWP) and rainwater path (RWP). The resulting CWP estimates are primarily determined by the optical depth input, although reflectivity measurements contribute ~ 10–50 % of the uncertainty due to attenuation through the profile. Uncertainties in CWP estimates across all conditions are 25 % to 35 %, while RWP uncertainty estimates frequently exceed 100 %. Two thirds of all radar-detected clouds observed during the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign that took place from 2016–2018 over the southeast Atlantic Ocean have CWP between 41 and 168 g m−2 and almost all CWPs (99 %) between 6 to 445 g m−2. RWP, by contrast, typically makes up a much smaller fraction of total liquid water path (LWP) with more than 70 % of raining clouds having less than 10 g m−2 of rainwater. In heavier warm rain (i.e. rain rate exceeding 40 mm h−1 or 1000 mm d−1), however, RWP is observed to exceed 2500 g m−2. CWP (RWP) is found to be approximately 30 g m−2 (7 g m−2) larger in unstable environments compared to stable environments. Surface precipitation is also more than twice as likely in unstable environments. Comparisons against in-situ cloud microphysical probe data spanning the range of thermodynamic stability and meteorological conditions encountered across the southeast Atlantic basin demonstrate that the combined APR-3 and RSP dataset enable a robust joint cloud-precipitation retrieval algorithm to support future ORACLES precipitation susceptibility and cloud–aerosol–precipitation interaction studies.


2021 ◽  
Vol 21 (7) ◽  
pp. 5513-5532
Author(s):  
Andrew M. Dzambo ◽  
Tristan L'Ecuyer ◽  
Kenneth Sinclair ◽  
Bastiaan van Diedenhoven ◽  
Siddhant Gupta ◽  
...  

Abstract. This study presents a new algorithm that combines W-band reflectivity measurements from the Airborne Precipitation Radar – third generation (APR-3) passive radiometric cloud optical depth and effective radius retrievals from the Research Scanning Polarimeter (RSP) to estimate total liquid water path in warm clouds and identify the contributions from cloud water path (CWP) and rainwater path (RWP). The resulting CWP estimates are primarily determined by the optical depth input, although reflectivity measurements contribute ∼10 %–50 % of the uncertainty due to attenuation through the profile. Uncertainties in CWP estimates across all conditions are 25 % to 35 %, while RWP uncertainty estimates frequently exceed 100 %. Two-thirds of all radar-detected clouds observed during the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign that took place from 2016–2018 over the southeast Atlantic Ocean have CWP between 41 and 168 g m−2 and almost all CWPs (99 %) between 6 to 445 g m−2. RWP, by contrast, typically makes up a much smaller fraction of total liquid water path (LWP), with more than 70 % of raining clouds having less than 10 g m−2 of rainwater. In heavier warm rain (i.e., rain rate exceeding 40 mm h−1 or 1000 mm d−1), however, RWP is observed to exceed 2500 g m−2. CWP (RWP) is found to be approximately 30 g m−2 (7 g m−2) larger in unstable environments compared to stable environments. Surface precipitation is also more than twice as likely in unstable environments. Comparisons against in situ cloud microphysical probe data spanning the range of thermodynamic stability and meteorological conditions encountered across the southeast Atlantic basin demonstrate that the combined APR-3 and RSP dataset enable a robust joint cloud–precipitation retrieval algorithm to support future ORACLES precipitation susceptibility and cloud–aerosol–precipitation interaction studies.


2019 ◽  
Vol 12 (9) ◽  
pp. 3939-3954
Author(s):  
Frederik Kurzrock ◽  
Hannah Nguyen ◽  
Jerome Sauer ◽  
Fabrice Chane Ming ◽  
Sylvain Cros ◽  
...  

Abstract. Numerical weather prediction models tend to underestimate cloud presence and therefore often overestimate global horizontal irradiance (GHI). The assimilation of cloud water path (CWP) retrievals from geostationary satellites using an ensemble Kalman filter (EnKF) led to improved short-term GHI forecasts of the Weather Research and Forecasting (WRF) model in midlatitudes in case studies. An evaluation of the method under tropical conditions and a quantification of this improvement for study periods of more than a few days are still missing. This paper focuses on the assimilation of CWP retrievals in three phases (ice, supercooled, and liquid) in a 6-hourly cycling procedure and on the impact of this method on short-term forecasts of GHI for Réunion Island, a tropical island in the southwest Indian Ocean. The multilayer gridded cloud properties of NASA Langley's Satellite ClOud and Radiation Property retrieval System (SatCORPS) are assimilated using the EnKF of the Data Assimilation Research Testbed (DART) Manhattan release (revision 12002) and the advanced research WRF (ARW) v3.9.1.1. The ability of the method to improve cloud analyses and GHI forecasts is demonstrated, and a comparison using independent radiosoundings shows a reduction of specific humidity bias in the WRF analyses, especially in the low and middle troposphere. Ground-based GHI observations at 12 sites on Réunion Island are used to quantify the impact of CWP DA. Over a total of 44 d during austral summertime, when averaged over all sites, CWP data assimilation has a positive impact on GHI forecasts for all lead times between 5 and 14 h. Root mean square error and mean absolute error are reduced by 4 % and 3 %, respectively.


2015 ◽  
Vol 8 (4) ◽  
pp. 4307-4323
Author(s):  
P. Wu ◽  
X. Dong ◽  
B. Xi

Abstract. In this study, we retrieve and document drizzle properties, and investigate the impact of drizzle on cloud property retrievals from ground-based measurements at the ARM Azores site from June 2009 to December 2010. For the selected cloud and drizzle samples, the drizzle occurrence is 42.6% with a maximum of 55.8% in winter and a minimum of 35.6% in summer. The annual means of drizzle liquid water path LWPd, effective radius rd, and number concentration Nd for the rain (virga) samples are 5.48 (1.29) g m−2, 68.7 (39.5) μm, and 0.14 (0.38) cm−3. The seasonal mean LWPd values are less than 4% of the MWR-retrieved LWP values. The annual mean differences in cloud-droplet effective radius with and without drizzle are 0.12 and 0.38 μm, respectively, for the virga and rain samples. Therefore, we conclude that the impact of drizzle on cloud property retrievals is insignificant at the ARM Azores site.


2012 ◽  
Vol 12 (17) ◽  
pp. 7961-7975 ◽  
Author(s):  
P. Pandey ◽  
K. De Ridder ◽  
D. Gillotay ◽  
N. P. M. van Lipzig

Abstract. In this paper, we describe the implementation of the Semi-Analytical Cloud Retrieval Algorithm (SACURA), to obtain scaled cloud optical thickness (SCOT) from satellite imagery acquired with the SEVIRI instrument and surface UV irradiance levels. In estimation of SCOT particular care is given to the proper specification of the background (i.e. cloud-free) spectral albedo and the retrieval of the cloud water phase from reflectance ratios in SEVIRI's 0.6 μm and 1.6 μm spectral bands. The SACURA scheme is then applied to daytime SEVIRI imagery over Europe, for the month of June 2006, at 15-min time increments. The resulting SCOT fields are compared with values obtained by the CloudSat experimental satellite mission, yielding a negligible bias, correlation coefficients ranging from 0.51 to 0.78, and a root mean square difference of 1 to 2 SCOT increments. These findings compare favourably to results from similar intercomparison exercises reported in the literature. Based on the retrieved SCOT from SEVIRI and radiative transfer modelling approach, simple parameterisations are proposed to estimate the surface UV-A and UV-B irradiance. The validation of the modelled UV-A and UV-B irradiance against the measurements over two Belgian stations, Redu and Ostend, indicate good agreement with the high correlation, index of agreement and low bias. The SCOT fields estimated by implementing SACURA on imagery from geostationary satellite are reliable and its impact on surface UV irradiance levels is well produced.


2015 ◽  
Vol 8 (7) ◽  
pp. 2663-2683 ◽  
Author(s):  
M. D. Fielding ◽  
J. C. Chiu ◽  
R. J. Hogan ◽  
G. Feingold ◽  
E. Eloranta ◽  
...  

Abstract. Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.


Sign in / Sign up

Export Citation Format

Share Document