scholarly journals Oxygen abundance in coronal streamers during solar minimum

2001 ◽  
Vol 19 (2) ◽  
pp. 135-145 ◽  
Author(s):  
D. Marocchi ◽  
E. Antonucci ◽  
S. Giordano

Abstract. We present a study of the oxygen abundance relative to hydrogen in the equatorial streamer belt of the solar corona during the recent period of activity minimum. The oxygen abundance is derived from the spectroscopic observations of the outer corona performed during 1996 with the Ultraviolet Coronagraph Spectrometer (SOHO) in the ultra-violet region. This study shows that the depletion of oxygen, by almost one order of magnitude with respect to the photospheric values, found in the inner part of streamers by Raymond et al. (1997a) is a common feature of the solar minimum streamer belt, which exhibits an abundance structure with the following characteristics. In the core of streamers the oxygen abundance is 1.3 × 10-4 at 1.5 R⊙, then it drops to 0.8 × 10-4 at 1.7 R⊙, value which remains almost constant out to 2.2 R⊙. In the lateral bright structures that are ob-served to surround the core of streamers in the oxygen emission, the oxygen abundance drops monotonically with heliodistance, from 3.5 × 10-4 at 1.5 R⊙ to 2.2 × 10-4 at 2.2 R⊙. The oxygen abundance structure found in the streamer belt is consistent with the model of magnetic topology of streamers proposed by Noci et al. (1997). The composition of the plasma contained in streamers is not the same as observed in the slow solar wind. Even in the lateral branches, richer in oxygen, at 2.2 R⊙ the abundance drops by a factor 2 with respect to the slow wind plasma observed with Ulysses during the declining phase of the solar cycle. Hence the slow wind does not appear to originate primarily from streamers, with the exception perhaps of the plasma flowing along the heliospheric current sheet.Key words. Interplanetary physics (solar wind plasma) – Solar physics, astrophysics and astronomy (corona and transition region; ultraviolet emissions)

2000 ◽  
Vol 18 (9) ◽  
pp. 995-1002 ◽  
Author(s):  
A. R. Breen ◽  
S. J. Tappin ◽  
C. A. Jordan ◽  
P. Thomasson ◽  
P. J. Moran ◽  
...  

Abstract. Simultaneous observations of the slow solar wind off the southeast limb of the Sun were made in May 1999 using optical measurements from the C2 and C3 LASCO coronagraphs on board the SOHO spacecraft and radio-scattering measurements from the MERLIN and EISCAT facilities. The observations show the slow solar wind accelerating outwards from 4.5 solar radii (R), reaching a final velocity of 200-300 km s-1 by 25-30 R. The acceleration profile indicated by these results is more gentle than the average profile seen in earlier LASCO observations of larger scale features, but is within the variation seen in these studies.Key words: Interplanetary physics (solar wind plasma; sources of the solar wind; instruments and techniques)


2003 ◽  
Vol 21 (6) ◽  
pp. 1331-1339 ◽  
Author(s):  
H. A. Elliott ◽  
D. J. McComas ◽  
P. Riley

Abstract. Comparison of solar wind observations from the ACE spacecraft, in the ecliptic plane at ~ 1 AU, and the Ulysses spacecraft as it orbits over the Sun’s poles, provides valuable information about the latitudinal extent and variation of solar wind structures in the heliosphere. While qualitative comparisons can be made using average properties observed at these two locations, the comparison of specific, individual structures requires a procedure to determine if a given structure has been observed by both spacecraft. We use a 1-D hydrodynamic code to propagate ACE plasma measurements out to the distance of Ulysses and adjust for the differing longitudes of the ACE and Ulysses spacecraft. In addition to comparing the plasma parameters and their characteristic profiles, we examine suprathermal electron measurements and magnetic field polarity to help determine if the same features are encountered at both ACE and Ulysses. The He I l 1083 nm coronal hole maps are examined to understand the global structure of the Sun during the time of our heliospheric measurements. We find that the same features are frequently observed when both spacecraft are near the ecliptic plane. Stream structures derived from smaller coronal holes during the rising phase of solar cycle 23 persists over 20°–30° in heliolatitude, consistent with their spatial scales back at the Sun.Key words. Interplanetary physics (solar wind plasma)


2015 ◽  
Vol 33 (1) ◽  
pp. 47-53 ◽  
Author(s):  
L. Ofman ◽  
E. Provornikova ◽  
L. Abbo ◽  
S. Giordano

Abstract. Observations of streamers in extreme ultraviolet (EUV) emission with SOHO/UVCS show dramatic differences in line profiles and latitudinal variations in heavy ion emission compared to hydrogen Ly-α emission. In order to use ion emission observations of streamers as the diagnostics of the slow solar wind properties, an adequate model of a streamer including heavy ions is required. We extended a previous 2.5-D multi-species magnetohydrodynamics (MHD) model of a coronal streamer to 3-D spherical geometry, and in the first approach we consider a tilted dipole configuration of the solar magnetic field. The aim of the present study is to test the 3-D results by comparing to previous 2.5-D model result for a 3-D case with moderate departure from azimuthal symmetry. The model includes O5+ ions with preferential empirical heating and allows for calculation of their density, velocity and temperature in coronal streamers. We present the first results of our 3-D multi-fluid model showing the parameters of protons, electrons and heavy ions (O5+) at the steady-state solar corona with a tilted steamer belt. We find that the 3-D results are in qualitative agreement with our previous 2.5-D model, and show longitudinal variation in the variables in accordance with the tilted streamer belt structure. Properties of heavy coronal ions obtained from the 3-D model together with EUV spectroscopic observations of streamers will help understanding the 3-D structures of streamers reducing line-of-sight integration ambiguities and identifying the sources of the slow solar wind in the lower corona. This leads to improved understanding of the physics of the slow solar wind.


2019 ◽  
Vol 623 ◽  
pp. A95 ◽  
Author(s):  
L. Abbo ◽  
S. Giordano ◽  
L. Ofman

During solar minimum activity, the coronal structure is dominated by a tilted streamer belt, associated with the sources of the slow solar wind. It is known that some UV coronal spectral observations show a quite evident core dimming in heavy ions emission in quiescent streamers. In this paper, our purpose is to investigate this phenomenon by comparing observed and simulated UV coronal ion spectral line intensities. First, we computed the emissivities and the intensities of HI Lyα and OVI spectral lines starting from the physical parameters of a time-dependent 3D three-fluid MHD model of the coronal streamer belt. The model is applied to a tilted dipole (10°) solar minimum magnetic structure. Next, we compared the results obtained from the model in the extended corona (from 1.5 to 4 R⊙) to the UV spectroscopic data from the Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO during the minimum of solar activity (1996). We investigate the line-of-sight integration and projection effects in the UV spectroscopic observations, disentangled by the 3D multifluid model. The results demonstrate that the core dimming in heavy ions is produced by the physical processes included in the model (i.e., combination of the effects of heavy ion gravitational settling, and energy exchange of the preferentially heated heavy ions through the interaction with electrons and protons) but it is visible only in some cases where the magnetic structure is simple, such as a (tilted) dipole.


2000 ◽  
Vol 18 (9) ◽  
pp. 1003-1008 ◽  
Author(s):  
P. J. Moran ◽  
S. Ananthakrishnan ◽  
V. Balasubramanian ◽  
A. R. Breen ◽  
A. Canals ◽  
...  

Abstract. Observations of interplanetary scintillation (IPS) allow accurate solar wind velocity measurements to be made at all heliographic latitudes and at a range of distances from the Sun. The data may be obtained with either single, double or multiple antennas, each requiring a different method of analysis. IPS data taken during the 1998 whole sun month (30th July-31st August 1998) by EISCAT, the ORT (Ooty Radio Telescope), India, and the Nagoya IPS system, Japan, allow the results of individual methods of analysis to be compared. Good agreement is found between the velocity measurements using each method, and when combined an improved understanding of the structure of the solar wind can be obtained.Key words: Interplanetary physics (solar wind plasma; sources of the solar wind) - Solar physics, astrophysics and astronomy (instruments and techniques)


2003 ◽  
Vol 21 (6) ◽  
pp. 1347-1357 ◽  
Author(s):  
P. Riley ◽  
Z. Mikić ◽  
J. A. Linker

Abstract. In this study we describe a series of MHD simulations covering the time period from 12 January 1999 to 19 September 2001 (Carrington Rotation 1945 to 1980). This interval coincided with: (1) the Sun’s approach toward solar maximum; and (2) Ulysses’ second descent to the southern polar regions, rapid latitude scan, and arrival into the northern polar regions. We focus on the evolution of several key parameters during this time, including the photospheric magnetic field, the computed coronal hole boundaries, the computed velocity profile near the Sun, and the plasma and magnetic field parameters at the location of Ulysses. The model results provide a global context for interpreting the often complex in situ measurements. We also present a heuristic explanation of stream dynamics to describe the morphology of interaction regions at solar maximum and contrast it with the picture that resulted from Ulysses’ first orbit, which occurred during more quiescent solar conditions. The simulation results described here are available at: http://sun.saic.com.Key words. Interplanetary physics (Interplanetary magnetic fields; solar wind plasma; sources of the solar wind)


2019 ◽  
Vol 627 ◽  
pp. A96 ◽  
Author(s):  
R. Bruno ◽  
D. Telloni ◽  
L. Sorriso-Valvo ◽  
R. Marino ◽  
R. De Marco ◽  
...  

Fluctuations of solar wind magnetic field and plasma parameters exhibit a typical turbulence power spectrum with a spectral index ranging between ∼5/3 and ∼3/2. In particular, at 1 AU, the magnetic field spectrum, observed within fast corotating streams, also shows a clear steepening for frequencies higher than the typical proton scales, of the order of ∼3 × 10−1 Hz, and a flattening towards 1/f at frequencies lower than ∼10−3 Hz. However, the current literature reports observations of the low-frequency break only for fast streams. Slow streams, as observed to date, have not shown a clear break, and this has commonly been attributed to slow wind intervals not being long enough. Actually, because of the longer transit time from the Sun, slow wind turbulence would be older and the frequency break would be shifted to lower frequencies with respect to fast wind. Based on this hypothesis, we performed a careful search for long-lasting slow wind intervals throughout 12 years of Wind satellite measurements. Our search, based on stringent requirements not only on wind speed but also on the level of magnetic compressibility and Alfvénicity of the turbulent fluctuations, yielded 48 slow wind streams lasting longer than 7 days. This result allowed us to extend our study to frequencies sufficiently low and, for the first time in the literature, we are able to show that the 1/f magnetic spectral scaling is also present in the slow solar wind, provided the interval is long enough. However, this is not the case for the slow wind velocity spectrum, which keeps the typical Kolmogorov scaling throughout the analysed frequency range. After ruling out the possible role of compressibility and Alfvénicity for the 1/f scaling, a possible explanation in terms of magnetic amplitude saturation, as recently proposed in the literature, is suggested.


1996 ◽  
Vol 14 (12) ◽  
pp. 1235-1245 ◽  
Author(s):  
A. R. Breen ◽  
W. A. Coles ◽  
R. R. Grall ◽  
M. T. Klinglesmith ◽  
J. Markkanen ◽  
...  

Abstract. EISCAT observations of interplanetary scintillation have been used to measure the velocity of the solar wind at distances between 15 and 130 R⊙ (solar radii) from the Sun. The results show that the solar wind consists of two distinct components, a fast stream with a velocity of ~800 km s–1 and a slow stream at ~400 km s–1. The fast stream appears to reach its final velocity much closer to the Sun than expected. The results presented here suggest that this is also true for the slow solar wind. Away from interaction regions the flow vector of the solar wind is purely radial to the Sun. Observations have been made of fast wind/slow wind interactions which show enhanced levels of scintillation in compression regions.


Solar Physics ◽  
2007 ◽  
Vol 240 (1) ◽  
pp. 135-151 ◽  
Author(s):  
M. Eselevich ◽  
V. Eselevich ◽  
K. Fujiki

Sign in / Sign up

Export Citation Format

Share Document