scholarly journals Two types of ion spectral gaps in the quiet inner magnetosphere: Interball-2 observations and modeling

2002 ◽  
Vol 20 (3) ◽  
pp. 349-364 ◽  
Author(s):  
N. Y. Buzulukova ◽  
Y. I. Galperin ◽  
R. A. Kovrazhkin ◽  
A. L. Glazunov ◽  
G. A. Vladimirova ◽  
...  

Abstract. We analyse measurements of ion spectral gaps (ISGs) observed by the ION particle spectrometer on board the Interball-2 satellite. The ISG represents a sharp decrease in H+ flux at a particular narrow energy range. ISGs are practically always observed in the inner magnetosphere in a wide MLT range during quiet times. Clear examples of ISG in the morning, dayside, evening and nightside sectors of the magnetosphere are selected for detailed analysis and modeling. To obtain a model ISG, the trajectories of ions drifting in the equatorial plane from their nightside source to the observation point were computed for the energy range 0.1–15 keV. Three global convection models (McIlwain, 1972, 1986; Volland, 1973; Stern, 1975) were tested to reproduce the observed ISGs in all MLT sectors. Qualitative agreement is obtained for all three models, but the better agreement for quiet times is reached with the McIlwain (1972) convection model. It is shown that the ISGs observed by the ION spectrometer throughout the inner magnetosphere are the result of super-position of the two effects, already described in the literature (e.g. McIlwain, 1972; Shirai et al., 1997), but acting under different conditions. Also, the role of particle source location on the model gaps is investigated. It may be concluded that despite the evidence of large amplitude and directional local fluctuations of electric fields in the inner magnetosphere (Quinn et al., 1999), the existence of a stationary average convection pattern is confirmed by this modeling. This fact directly follows from observations of ISGs and from a good agreement of observations with modeled gaps calculated in the frames of adiabatic theory for a stationary (average) convection pattern.Key words. Magnetospheric physics (plasma convection; electric fields)

2021 ◽  
Author(s):  
Chao Yue

<p>Van Allen Probes observations of ion spectra often show a sustained gap within a very narrow energy range throughout the full orbit. To understand their formation mechanism, we statistically investigate the characteristics of the narrow gaps for oxygen ions and find that they are most frequently observed near the noon sector with a peak occurrence rate of over 30%. The magnetic moment (μ) of the oxygen ions in the gap shows a strong dependence on magnetic local time (MLT), with higher and lower μ in the morning and afternoon sectors, respectively. Moreover, we find through superposed epoch analysis that the gap formation also depends on geomagnetic conditions. Those gaps formed at lower magnetic moments (μ < 3000 keV/G) are associated with stable convection electric fields, which enable magnetospheric ions to follow a steady drift pattern that facilitates the gap formation by corotational drift resonance. On the other hand, gaps with higher μ values are statistically preceded by a gradual increase of geomagnetic activity. We suggest that ions within the gap were originally located inside the Alfven layer following closed drift paths, before they were transitioned into open drift paths as the convection electric field was enhanced. The sunward drift of these ions, with very low fluxes, forms a drainage void in the dayside magnetosphere manifested as the sustained gap in the oxygen spectrum. This scenario is supported by particle-tracing simulations, which reproduce most of the observed characteristics and therefore provide new insights into inner magnetospheric dynamics.</p>


2004 ◽  
Vol 22 (12) ◽  
pp. 4291-4298 ◽  
Author(s):  
D. L. Carpenter ◽  
J. Lemaire

Abstract. As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities)


2009 ◽  
Vol 27 (1) ◽  
pp. 199-230 ◽  
Author(s):  
C. G. A. Smith ◽  
A. D. Aylward

Abstract. We describe an axisymmetric model of the coupled rotational dynamics of the thermosphere and magnetosphere of Jupiter that incorporates self-consistent physical descriptions of angular momentum transfer in both systems. The thermospheric component of the model is a numerical general circulation model. The middle magnetosphere is described by a simple physical model of angular momentum transfer that incorporates self-consistently the effects of variations in the ionospheric conductivity. The outer magnetosphere is described by a model that assumes the existence of a Dungey cycle type interaction with the solar wind, producing at the planet a largely stagnant plasma flow poleward of the main auroral oval. We neglect any decoupling between the plasma flows in the magnetosphere and ionosphere due to the formation of parallel electric fields in the magnetosphere. The model shows that the principle mechanism by which angular momentum is supplied to the polar thermosphere is meridional advection and that mean-field Joule heating and ion drag at high latitudes are not responsible for the high thermospheric temperatures at low latitudes on Jupiter. The rotational dynamics of the magnetosphere at radial distances beyond ~30 RJ in the equatorial plane are qualitatively unaffected by including the detailed dynamics of the thermosphere, but within this radial distance the rotation of the magnetosphere is very sensitive to the rotation velocity of the thermosphere and the value of the Pedersen conductivity. In particular, the thermosphere connected to the inner magnetosphere is found to super-corotate, such that true Pedersen conductivities smaller than previously predicted are required to enforce the observed rotation of the magnetosphere within ~30 RJ. We find that increasing the Joule heating at high latitudes by adding a component due to rapidly fluctuating electric fields is unable to explain the high equatorial temperatures. Adding a component of Joule heating due to fluctuations at low latitudes is able to explain the high equatorial temperatures, but the thermospheric wind systems generated by this heating cause super-corotation of the inner magnetosphere in contradiction to the observations. We conclude that the coupled model is a particularly useful tool for study of the thermosphere as it allows us to constrain the plausibility of predicted thermospheric structures using existing observations of the magnetosphere.


Strong interactions occur between the solar wind and the Earth’s magnetic field which result in the convection of ionospheric plasma over the polar cap regions. This generally forms a two-cell pattern with westward and eastward flows in the pre- and post-midnight sectors respectively. The flow pattern is sensitive to the flux of the solar wind and the direction of the interplanetary magnetic field. Observations of the flow pattern are thus of considerable value in the interpretation of the magnetosphere-ionosphere coupling processes and in identifying the influence of the solar wind on the Earth’s environment. The plasma convection can be observed by ground-based coherent and incoherent scatter radars and the flow vectors determined. Measurements for a range of flow conditions are presented. These are interpreted in terms of the interactions of the solar wind with the magnetosphere and the resulting electric fields which drive the plasma flows in the ionosphere.


2004 ◽  
Vol 22 (2) ◽  
pp. 497-510 ◽  
Author(s):  
G. V. Khazanov ◽  
M. W. Liemohn ◽  
T. S. Newman ◽  
M.-C. Fok ◽  
A. J. Ridley

Abstract. It is shown that narrow channels of high electric field are an effective mechanism for injecting plasma into the inner magnetosphere. Analytical expressions for the electric field cannot produce these channels of intense plasma flow, and thus, result in less entry and adiabatic energization of the plasma sheet into near-Earth space. For the ions, omission of these channels leads to an underprediction of the strength of the stormtime ring current and therefore, an underestimation of the geoeffectiveness of the storm event. For the electrons, omission of these channels leads to the inability to create a seed population of 10-100 keV electrons deep in the inner magnetosphere. These electrons can eventually be accelerated into MeV radiation belt particles. To examine this, the 1-7 May 1998 magnetic storm is studied with a plasma transport model by using three different convection electric field models: Volland-Stern, Weimer, and AMIE. It is found that the AMIE model can produce particle fluxes that are several orders of magnitude higher in the L = 2 – 4 range of the inner magnetosphere, even for a similar total cross-tail potential difference. Key words. Space plasma physics (charged particle motion and acceleration) – Magnetospheric physics (electric fields, storms and substorms)


2004 ◽  
Vol 22 (4) ◽  
pp. 1213-1231 ◽  
Author(s):  
J. A. Cumnock ◽  
L. G. Blomberg

Abstract. We present two event studies encompassing detailed relationships between plasma convection, field-aligned current, auroral emission, and particle precipitation boundaries. We illustrate the influence of the Interplanetary Magnetic Field By component on theta aurora development by showing two events during which the theta originates on both the dawn and dusk sides of the auroral oval. Both theta then move across the entire polar region and become part of the opposite side of the auroral oval. Electric and magnetic field and precipitating particle data are provided by DMSP, while the Polar UVI instrument provides measurements of auroral emissions. Utilizing satellite data as inputs, the Royal Institute of Technology model provides the high-latitude ionospheric electrostatic potential pattern calculated at different times during the evolution of the theta aurora, resulting from a variety of field-aligned current configurations associated with the changing global aurora. Key words. Ionosphere (auroral ionosphere; electric fields and currents). Magnetospheric physics (magnetosphereionosphere interactions)


2000 ◽  
Vol 25 (7-8) ◽  
pp. 1393-1396 ◽  
Author(s):  
Nelson C Maynard ◽  
William J Burke ◽  
Gordon R Wilson

2004 ◽  
Vol 22 (5) ◽  
pp. 1649-1664
Author(s):  
R. A. Makarevitch ◽  
F. Honary ◽  
A. V. Koustov ◽  
M. V. Uspensky

Abstract. The meridional motions of the CUTLASS HF and STARE VHF coherent echoes, IMAGE equivalent electrojet currents, and IRIS absorption patches during the postnoon/early-evening event of 14 February 2000 are presented. The motions were found to be synchronous, to a first approximation, for all instruments. The temporal correlation between motions in the radar and magnetometer data was exceptionally good, although spatially the areas with the E-region backscatter and most intense equivalent currents were not coincident, with the HF (VHF) echoes being shifted 100–200km (20–50km) equatorward (poleward). The meridional motions of the radar echoes and electrojet currents appeared to be controlled by the IMF Bz changes; the meridional propagation direction was equatorward (poleward) during the intervals when the IMF was southward (northward), with one exception when the poleward progression continued after the IMF southward turning. We relate the observed meridional motion patterns to the polar cap expansion/contraction during variable IMF conditions and discuss the relative importance of two types of processes: the dayside reconnection and IMF-triggered substorms. We also investigate the irregularity Doppler velocity for the STARE (144MHz) and CUTLASS (12MHz) observations at large flow angles in the context of the eastward and westward electrojet systems. We show that the 144-MHz Doppler velocity is determined by a combination of two factors: the sense of electrojet currents and the aspect angle conditions within the STARE field of view. Finally, the behavior of small dayside enhancements of the IRIS absorption (up to 0.5dB at 38.2MHz) accompanying the radar echoes and electrojet currents is examined. Since the velocity of the meridional displacements was close to that of the poleward/equatorward progressing intense currents, it is suggested that the absorption patches observed during the event were related to the heating of the E-region plasma by the unstable plasma waves in the regions of enhanced electric fields. Key words. Ionosphere (auroral ionosphere; electric fields and currents; plasma convection)


Sign in / Sign up

Export Citation Format

Share Document