Review of "Variation of the 630.0 nm airglow emission with meridional neutral wind and neutral temperature around midnight" by Chiang et al.

2018 ◽  
Author(s):  
Anonymous
2017 ◽  
Vol 35 (4) ◽  
pp. 953-963 ◽  
Author(s):  
Cosme Alexandre O. B. Figueiredo ◽  
Ricardo A. Buriti ◽  
Igo Paulino ◽  
John W. Meriwether ◽  
Jonathan J. Makela ◽  
...  

Abstract. The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry–Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU  =  10−22 W m−2 Hz−1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h′F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s−1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s−1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to −50 m s−1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in the MTM generation. From February to April and from September to December, the h′F and the hmF2 showed an increase around 18:00–20:00 LT within a range between 300 and 550 km and reached a minimal height of about 200–300 km close to midnight; then the layer rose again by about 40 km or, sometimes, remained at constant height. Furthermore, during the winter months, the h′F and hmF2 showed a different behavior; the signature of the pre-reversal enhancement did not appear as in other months and the heights did not exceed 260 and 350 km. Our observation indicated that the midnight collapse of the F region was a consequence of the MTM in the meridional wind that was reflected in the height of the F region. Lastly, the behavior of the OI6300 showed, from February to April and from September to December, an increase in intensity around midnight or 1 h before, which was associated with the MTM, whereas, from May to August, the relative intensity was more intense in the early evening and decayed during the night.


2018 ◽  
Vol 36 (5) ◽  
pp. 1471-1481
Author(s):  
Chih-Yu Chiang ◽  
Sunny Wing-Yee Tam ◽  
Tzu-Fang Chang

Abstract. The ISUAL payload onboard the FORMOSAT-2 satellite has often observed airglow bright spots around midnight at equatorial latitudes. Such features had been suggested as the signature of the thermospheric midnight temperature maximum (MTM) effect, which was associated with temperature and meridional neutral winds. This study investigates the influence of neutral temperature and meridional neutral wind on the volume emission rates of the 630.0 nm nightglow. We utilize the SAMI2 model to simulate the charged and neutral species at the 630.0 nm nightglow emission layer under different temperatures with and without the effect of neutral wind. The results show that the neutral wind is more efficient than temperature variation in affecting the nightglow emission rates. For example, based on our estimation, it would require a temperature change of 145 K to produce a change in the integrated emission rate by 9.8 km-photons cm−3 s−1, while it only needs the neutral wind velocity to change by 1.85 m−1 s−1 to cause the same change in the integrated emission rate. However, the emission rate features a local maximum in its variation with the temperature. Two kinds of tendencies can be seen regarding the temperature that corresponds to the turning point, which is named the turning temperature (Tt) in this study: firstly, Tt decreases with the emission rate for the same altitude; secondly, for approximately the same emission rate, Tt increases with the altitude.


2018 ◽  
Author(s):  
Chih-Yu Chiang ◽  
Sunny Wing-Yee Tam ◽  
Tzu-Fang Chang

Abstract. Enhancements in 630.0 nm airglow around midnight at equatorial latitudes were observed by many optical observations. Such features had been suggested as the signature of thermospheric midnight temperature maximum (MTM) effect, which was associated with temperature and meridional neutral winds. This study investigates the influence of neutral temperature and meridional neutral wind on the volume emission rates of the 630.0 nm nightglow. We utilize the SAMI2 model to simulate the charged and neutral species at the 630.0 nm nightglow emission layer under different temperatures with and without the effect of neutral wind. The results show that the neutral wind is more efficient than temperature variation in affecting the nightglow emission rates. However, the emission rate features a local maximum in its variation with the temperature. Two kinds of tendencies can be seen regarding the temperature that corresponds to the turning point, which is named the turning temperature (Tt) in this study: firstly, Tt decreases with the emission rate for the same altitude; secondly, for approximately the same emission rate, Tt increases with the altitude.


Measurements of neutral wind velocity and neutral atmospheric temperature above 90 km in the auroral zone have shown distinct correlations with local and global geomagnetic activity respectively. Individual magnetic substorms have been observed to produce neutral wind speeds of over 500 m -s at 130 to 150 km. Ion-neutral particle drag is a likely accelerating mechanism with enhanced meridional electric fields and electron density. These wind disturbances can theoretically propagate to mid-latitudes in the night hemisphere and produce anomalously high neutral wind speeds on a global scale especia y during geomagnetic storm conditions. Such anomalously high wind speeds have been observed on several occasions at mid-latitude sites during disturbed conditions. Neutral temperature values in the auroral zone show a positive correlation with geomagnetic activity with a relatively slow decay following heating. The temperature dependence upon the G9 index (which is representative of jQ) is altitude dependent, increasing from a value near to the global mean (25 K per unit C9) at 140 km to an enhanced value of 50 K per unit G9 at 165 km. Auroral zone measurements are only possible during the period September to April inclusive; however, in this period, during quiet geomagnetic conditions and between 130 and 200 km, there is a decrease of neutral temperature of 150±50K between mid-latitudes (30° N) and the aurora zone (70° N) which is significantly greater than the polewards decrease of temperature predicted from satellite drag density data.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4530
Author(s):  
Youcef Bouzidi ◽  
Zoubayre El Akili ◽  
Antoine Gademer ◽  
Nacef Tazi ◽  
Adil Chahboun

This paper investigates adaptive thermal comfort during summer in medical residences that are located in the French city of Troyes and managed by the Association of Parents of Disabled Children (APEI). Thermal comfort in these buildings is evaluated using subjective measurements and objective physical parameters. The thermal sensations of respondents were determined by questionnaires, while thermal comfort was estimated using the predicted mean vote (PMV) model. Indoor environmental parameters (relative humidity, mean radiant temperature, air temperature, and air velocity) were measured using a thermal environment sensor during the summer period in July and August 2018. A good correlation was found between operative temperature, mean radiant temperature, and PMV. The neutral temperature was determined by linear regression analysis of the operative temperature and Fanger’s PMV model. The obtained neutral temperature is 23.7 °C. Based on the datasets and questionnaires, the adaptive coefficient α representing patients’ capacity to adapt to heat was found to be 1.261. A strong correlation was also observed between the sequential thermal index n(t) and the adaptive temperature. Finally, a new empirical model of adaptive temperature was developed using the data collected from a longitudinal survey in four residential buildings of APEI in summer, and the obtained adaptive temperature is 25.0 °C with upper and lower limits of 24.7 °C and 25.4 °C.


2000 ◽  
Vol 18 (12) ◽  
pp. 1651-1656
Author(s):  
J. Lilensten ◽  
P. O. Amblard

Abstract. We examine the oscillations of the meridional neutral wind in the F region as seen by the EISCAT radar. We propose an interpretation in term of eddies (tourbillons) of typical size of a few tens to a few hundreds of kilometers. The observed rotation velocity is a few hundreds of meters per second. We suggest that the tourbillons are a common feature of thermospheric movements. We propose an optical experiment to check the validity of this assumption.Key words: Atmospheric composition and structure (thermosphere · composition and chemistry) · Ionosphere (ionosphere · atmosphere interactions)


Sign in / Sign up

Export Citation Format

Share Document