A discussion on D and E region winds over Europe - Winds and temperatures in the auroral zone and their relations to geomagnetic activity

Measurements of neutral wind velocity and neutral atmospheric temperature above 90 km in the auroral zone have shown distinct correlations with local and global geomagnetic activity respectively. Individual magnetic substorms have been observed to produce neutral wind speeds of over 500 m -s at 130 to 150 km. Ion-neutral particle drag is a likely accelerating mechanism with enhanced meridional electric fields and electron density. These wind disturbances can theoretically propagate to mid-latitudes in the night hemisphere and produce anomalously high neutral wind speeds on a global scale especia y during geomagnetic storm conditions. Such anomalously high wind speeds have been observed on several occasions at mid-latitude sites during disturbed conditions. Neutral temperature values in the auroral zone show a positive correlation with geomagnetic activity with a relatively slow decay following heating. The temperature dependence upon the G9 index (which is representative of jQ) is altitude dependent, increasing from a value near to the global mean (25 K per unit C9) at 140 km to an enhanced value of 50 K per unit G9 at 165 km. Auroral zone measurements are only possible during the period September to April inclusive; however, in this period, during quiet geomagnetic conditions and between 130 and 200 km, there is a decrease of neutral temperature of 150±50K between mid-latitudes (30° N) and the aurora zone (70° N) which is significantly greater than the polewards decrease of temperature predicted from satellite drag density data.

1995 ◽  
Vol 13 (11) ◽  
pp. 1172-1186 ◽  
Author(s):  
V. Fauliot ◽  
G. Thuillier ◽  
M. Hersé

Abstract. The MICADO instrument, consisting of a Michelson interferometer, has observed winds and temperatures during three winter campaigns in the auroral zone, and during 2 years at the Observatoire de Haute-Provence. The instrument observed the O(1S) oxygen emission line. Emission from this line originates from both the E- and F-regions. A method to separate the contribution from these two regions is presented for cases when the thermospheric component is comparable to that for the mesosphere. For the auroral latitudes, a mean model of the meridional and zonal neutral wind components as a function of magnetic activity and time is presented and compared to predictions from recent empirical models. For the mid-latitudes, several properties of the semi-diurnal tides are shown and compared to radar observations and predictions from recent theoretical models.


Author(s):  
Charles F. Kennel

Even if a steady convection state could exist in principle, the magnetosphere will be rarely in it, since the interplanetary magnetic field is hardly ever stationary over the 2-4 hour convection cycle (Rostoker et al., 1988). Indeed, the hourly average north-south component of the interplanetary field retained the same sign for two consecutive hours only 12.2% of the time during solar cycles 20 and 21 (Hapgood et al., 1991). If only for this reason, we cannot avoid dealing with time-dependent convection. In this section, we take up one method of coping with the issue. Correlation studies take advantage of solar wind variability without ever needing to consider the precise nature of the time-dependent response of the magnetosphere. Though laborious, they are a procedurally straightforward way to test the viscous and reconnection models of convection. Geomagnetic activity, the response of geomagnetic field to currents flowing in the ionosphere and in space, has been monitored in an increasingly systematic way since the beginning of the eighteenth century. Today, a worldwide network of ground stations provides continuous records of the magnetic field at many different locations on the earth’s surface. Before computational data displays enabled large quantities of data to be summarized at a glance, the complex multi-station records were combined into single parameters called geomagnetic indices, which were designed to characterize one aspect or another of geomagnetic activity on a global scale. We will refer frequently to the auroral electrojet (AE) index, which was designed by Davis and Sugiura (1966) as a measure of electrojet activity in the auroral zone. The index is derived from the horizontal, northern component of the geomagnetic perturbation field measured at a number of observatories in the northern hemisphere. The number of observing stations contributing to the index is occasionally indicated in parentheses as AE(12) or AE(32), and so on. The maximum and minimum perturbations recorded at any given time at the stations in the AE network are called the AU and AL indices, respectively, for “upper” and “lower.” These provide a measure of the westward and eastward electrojet strengths. The difference between AU and AL is the AE index.


2020 ◽  
Vol 13 (2) ◽  
pp. 445-465 ◽  
Author(s):  
Xiaochun Zhai ◽  
Uwe Marksteiner ◽  
Fabian Weiler ◽  
Christian Lemmerz ◽  
Oliver Lux ◽  
...  

Abstract. Aeolus, launched on 22 August in 2018, is the first ever satellite to directly observe wind information from the surface up to 30 km on a global scale. An airborne prototype instrument called ALADIN airborne demonstrator (A2D) was developed at the German Aerospace Center (DLR) for validating the Aeolus measurement principle based on realistic atmospheric signals. To obtain accurate wind retrievals, the A2D uses a measured Rayleigh response calibration (MRRC) to calibrate its Rayleigh channel signals. However, differences exist between the respective atmospheric temperature profiles that are present during the conduction of the MRRC and the actual wind measurements. These differences are an important source of wind bias since the atmospheric temperature has a direct effect on the instrument response calibration. Furthermore, some experimental limitations and requirements need to be considered carefully to achieve a reliable MRRC. The atmospheric and instrumental variability thus currently limit the reliability and repeatability of a MRRC. In this paper, a procedure for a simulated Rayleigh response calibration (SRRC) is developed and presented in order to resolve these limitations of the A2D MRRC. At first the transmission functions of the A2D Rayleigh channel double-edge Fabry–Pérot interferometers (FPIs) in the internal reference path and the atmospheric path are characterized and optimized based on measurements performed during different airborne and ground-based campaigns. The optimized FPI transmission functions are then combined with the laser reference spectrum and the temperature-dependent molecular Rayleigh backscatter spectrum to derive an accurate A2D SRRC which can finally be implemented into the wind retrieval. Using dropsonde data as a reference, a statistical analysis based on a dataset from a flight campaign in 2016 reveals a bias and a standard deviation of line-of-sight (LOS) wind speeds derived from a SRRC of only 0.05 and 2.52 m s−1, respectively. Compared to the result derived from a MRRC with a bias of 0.23 m s−1 and a standard deviation of 2.20 m s−1, the accuracy improved and the precision is considered to be at the same level. Furthermore, it is shown that the SRRC allows for the simulation of receiver responses over the whole altitude range from the aircraft down to sea level, thus overcoming limitations due to high ground elevation during the acquisition of an airborne instrument response calibration.


2005 ◽  
Vol 23 (7) ◽  
pp. 2319-2334 ◽  
Author(s):  
R. Pfaff ◽  
H. Freudenreich ◽  
T. Yokoyama ◽  
M. Yamamoto ◽  
S. Fukao ◽  
...  

Abstract. Electric field and plasma density data gathered on a sounding rocket launched from Uchinoura Space Center, Japan, reveal a complex electrodynamics associated with sporadic-E layers and simultaneous observations of quasi-periodic radar echoes. The electrodynamics are characterized by spatial and temporal variations that differed considerably between the rocket's upleg and downleg traversals of the lower ionosphere. Within the main sporadic-E layer (95–110 km) on the upleg, the electric fields were variable, with amplitudes of 2–4 mV/m that changed considerably within altitude intervals of 1–3 km. The identification of polarization electric fields coinciding with plasma density enhancements and/or depletions is not readily apparent. Within this region on the downleg, however, the direction of the electric field revealed a marked change that coincided precisely with the peak of a single, narrow sporadic-E plasma density layer near 102.5 km. This shear was presumably associated with the neutral wind shear responsible for the layer formation. The electric field data above the sporadic-E layer on the upleg, from 110 km to the rocket apogee of 152 km, revealed a continuous train of distinct, large scale, quasi-periodic structures with wavelengths of 10–15 km and wavevectors oriented between the NE-SW quadrants. The electric field structures had typical amplitudes of 3–5 mV/m with one excursion to 9 mV/m, and in a very general sense, were associated with perturbations in the plasma density. The electric field waveforms showed evidence for steepening and/or convergence effects and presumably had mapped upwards along the magnetic field from the sporadic-E region below. Candidate mechanisms to explain the origin of these structures include the Kelvin-Helmholtz instability and the Es-layer instability. In both cases, the same shear that formed the sporadic-E layer would provide the energy to generate the km-scale structures. Other possibilities include gravity waves or a combination of these processes. The data suggest that these structures were associated with the lower altitude density striations that were the seat of the QP radar echoes observed simultaneously. They also appear to have been associated with the mechanism responsible for a well-defined pattern of "whorls" in the neutral wind data that were revealed in a chemical trail released by a second sounding rocket launched 15min later. Short scale (<100 m) electric field irregularities were also observed and were strongest in the sporadic-E region below 110km. The irregularities were organized into 2–3 layers on the upleg, where the plasma density also displayed multiple layers, yet were confined to a single layer on the downleg where the plasma density showed a single, well-defined sporadic-E peak. The linear gradient drift instability involving the DC electric field and the vertical plasma gradient is shown to be incapable of driving the observed waves on the upleg, but may have contributed to the growth of short scale waves on the topside of the narrow unstable density gradient observed on the downleg. The data suggest that other sources of free energy may have been important factors for the growth of the short scale irregularities. Keywords. Ionosphere (Mid-latitude ionosphere; Electric fields and currents; Ionospheric irregularities)


2016 ◽  
Vol 68 (1) ◽  
Author(s):  
Juliano Moro ◽  
Clezio Marcos Denardini ◽  
Laysa Cristina Araújo Resende ◽  
Sony Su Chen ◽  
Nelson Jorge Schuch

2017 ◽  
Vol 122 (12) ◽  
pp. 12,517-12,533 ◽  
Author(s):  
J. Moro ◽  
L. C. A. Resende ◽  
C. M. Denardini ◽  
J. Xu ◽  
I. S. Batista ◽  
...  

1974 ◽  
Vol 29 (11) ◽  
pp. 1558-1571
Author(s):  
H.-J. Rehm

Paraelectric resonance spectra of beryl crystals are observed in the X-band region between 5 and 20 kV/cm under the condition that the external electric field F[101̅0]. Additional dielectric measurements show, that the paraelectric centres are the monomeric water molecules in the beryl cavities. For water dipoles in beryl only two orientations of the molecular a-axis relative to the crystal C6-axis are possible, and only those with their a-axis parallel to the C6-axis contribute to the paraelectric resonance effect. The electric moment vector µ of these latter molecules may rotate in the (0001)-crystal plane, i. e. around their own a-axis, and has a value of (1.9 ± 0.2) D. A theoretical description of paraelectric resonance is presented for a simplified model: the electric dipoles have 6 equivalent equilibrium positions along the [101̅0]-directions, tunnel effect and external electric fields remove the site degeneracy and we observe a molecular Stark splitting. We calculate a value of (2.0 ± 0.4) GHz for the zero-field splitting in the one-parameter Hamiltonian model.


2017 ◽  
Vol 35 (4) ◽  
pp. 953-963 ◽  
Author(s):  
Cosme Alexandre O. B. Figueiredo ◽  
Ricardo A. Buriti ◽  
Igo Paulino ◽  
John W. Meriwether ◽  
Jonathan J. Makela ◽  
...  

Abstract. The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry–Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU  =  10−22 W m−2 Hz−1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h′F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s−1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s−1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to −50 m s−1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in the MTM generation. From February to April and from September to December, the h′F and the hmF2 showed an increase around 18:00–20:00 LT within a range between 300 and 550 km and reached a minimal height of about 200–300 km close to midnight; then the layer rose again by about 40 km or, sometimes, remained at constant height. Furthermore, during the winter months, the h′F and hmF2 showed a different behavior; the signature of the pre-reversal enhancement did not appear as in other months and the heights did not exceed 260 and 350 km. Our observation indicated that the midnight collapse of the F region was a consequence of the MTM in the meridional wind that was reflected in the height of the F region. Lastly, the behavior of the OI6300 showed, from February to April and from September to December, an increase in intensity around midnight or 1 h before, which was associated with the MTM, whereas, from May to August, the relative intensity was more intense in the early evening and decayed during the night.


2018 ◽  
Vol 36 (5) ◽  
pp. 1471-1481
Author(s):  
Chih-Yu Chiang ◽  
Sunny Wing-Yee Tam ◽  
Tzu-Fang Chang

Abstract. The ISUAL payload onboard the FORMOSAT-2 satellite has often observed airglow bright spots around midnight at equatorial latitudes. Such features had been suggested as the signature of the thermospheric midnight temperature maximum (MTM) effect, which was associated with temperature and meridional neutral winds. This study investigates the influence of neutral temperature and meridional neutral wind on the volume emission rates of the 630.0 nm nightglow. We utilize the SAMI2 model to simulate the charged and neutral species at the 630.0 nm nightglow emission layer under different temperatures with and without the effect of neutral wind. The results show that the neutral wind is more efficient than temperature variation in affecting the nightglow emission rates. For example, based on our estimation, it would require a temperature change of 145 K to produce a change in the integrated emission rate by 9.8 km-photons cm−3 s−1, while it only needs the neutral wind velocity to change by 1.85 m−1 s−1 to cause the same change in the integrated emission rate. However, the emission rate features a local maximum in its variation with the temperature. Two kinds of tendencies can be seen regarding the temperature that corresponds to the turning point, which is named the turning temperature (Tt) in this study: firstly, Tt decreases with the emission rate for the same altitude; secondly, for approximately the same emission rate, Tt increases with the altitude.


2002 ◽  
Vol 20 (12) ◽  
pp. 1977-1985 ◽  
Author(s):  
R. Sridharan ◽  
C. V. Devasia ◽  
N. Jyoti ◽  
Diwakar Tiwari ◽  
K. S. Viswanathan ◽  
...  

Abstract. The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N), India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i) the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii) significant increase in h' F immediately following the eclipse and (iii) distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F) rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities)


Sign in / Sign up

Export Citation Format

Share Document