scholarly journals Ionospheric control of space weather

2021 ◽  
Author(s):  
Osuke Saka

Abstract. We propose that ionospheric plasma injections to the magnetosphere (ionospheric injection) represent a new plasma process in the polar ionosphere. The ionospheric injection is first triggered by westward electric fields transmitted from the convection surge in the magnetosphere in association with dipolarization onset. Localized westward electric fields result in local accumulation of ionospheric electrons because of differing electron and ion mobility in the E-layer. This charge imbalance was quickly reduced by polarization electric fields generated in the ionosphere. Meanwhile, ion/electron populations are partially released as injections to the magnetosphere to sustain initial potential distributions in quasi-neutral equilibrium. Resultant geomagnetic field lines are not in equipotential equilibrium during ionospheric injections but instead develop field-aligned potentials to extract ions/electrons ejected from the ionosphere. Field-aligned potential can exist in the magnetic mirror geometry of auroral field lines if the magnetospheric plasma follows quasi-neutral equilibrium. The parallel potential distribution may be global in scale varying monotonically along the field lines between the ionosphere and the equator. Amplified equatorial projection of ionospheric potentials then develop substorm dipolarization processes in a positive feedback loop. Cold plasmas from the ionosphere are distributed along the dynamical trajectories in the magnetosphere and conserve the total energy (including electrostatic potentials) and first adiabatic invariant. They distribute along a dynamical trajectory either leaving only the energetic part of ionospheric plasmas or not changing velocity space distributions from the ionospheric source.

2021 ◽  
Author(s):  
Osuke Saka

<p>We propose ionospheric plasma injections to the magnetosphere (ionospheric injection) as a new plasma process in the polar ionosphere. The ionospheric injection is first triggered by westward electric fields transmitted from the convection surge in the magnetosphere in association with dipolarization onset. Localized westward electric fields yield electrostatic potential in the ionosphere as a result of differing electron and ion mobility in the E-layer. To ensure quasi-neutrality of ionospheric plasmas, excess charges are released as injections out of the ionosphere, specifically electrons from positive potential region in higher latitudes and ions from negative potentials in lower latitudes. Potential difference on the order of 10 kV in north-south directions produces southward electric fields (100mv/m) at the footprint of the convection surge in both northern and southern hemispheres. Resultant geomagnetic field lines are not in equipotential equilibrium during ionospheric injections but instead develop downward electric fields in positive potential regions in higher latitudes to extract electrons and upward electric fields in negative potential regions in lower latitudes to extract ions. Parallel electric fields can exist in the magnetic mirror geometry of auroral field lines if the magnetospheric plasma follows quasi-neutral equilibrium. Because ionospheric injection has inherent dynamo processes as well as load, we term the polar ionosphere “dynamic ionosphere”.</p><p>Cold plasmas injected out of the dynamic ionosphere are transported along the dynamical trajectories to the magnetosphere conserving the total energy (including electrostatic potentials) and first adiabatic invariant. Electrons/ions traveling in downward/upward electric fields lose perpendicular and lower velocities in parallel component, leaving only the energetic part of ionospheric plasmas collimated along the field lines. Steady-state and one-dimensional dynamical trajectory shows that ion and electron temperatures at the ionosphere initially at 1 eV increased parallel temperatures to 202 eV and decreased perpendicular temperatures to 0.001 eV at geosynchronous altitudes where the electrostatic potential difference between ionosphere and magnetosphere was assumed to be 200 V. When potential difference increased to 600 V, the parallel temperatures increased to 602 eV, while perpendicular temperatures remain unchanged. Parallel potentials preferentially heated the ionospheric cold plasmas in parallel directions and transported tailward to feed the magnetosphere.</p>


2015 ◽  
Vol 21 (S4) ◽  
pp. 84-89
Author(s):  
H. Wollnik ◽  
F. Arai ◽  
Y. Ito ◽  
P. Schury ◽  
M. Wada

AbstractIons that are moved by electric fields in gases follow quite exactly the electric field lines since these ions have substantially lost their kinetic energies in collisions with gas atoms or molecules and so carry no momenta. Shaping the electric fields appropriately the phase space such ion beams occupy can be reduced and correspondingly the ion density of beams be increased.


2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. D. M. Walker ◽  
G. J. Sofko

Abstract. When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.


2002 ◽  
Vol 20 (12) ◽  
pp. 1977-1985 ◽  
Author(s):  
R. Sridharan ◽  
C. V. Devasia ◽  
N. Jyoti ◽  
Diwakar Tiwari ◽  
K. S. Viswanathan ◽  
...  

Abstract. The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N), India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i) the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii) significant increase in h' F immediately following the eclipse and (iii) distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F) rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities)


1987 ◽  
Vol 5 (2) ◽  
pp. 233-255 ◽  
Author(s):  
Nagendra Singh ◽  
H. Thiemann ◽  
R. W. Schunk

Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamic features of the double layers are discussed. These features, as seen in simulations, laboratory experiments and theory, indicate that double layers and the currents through them undergo slow oscillations, which are determined by the ion transit time across an effective length of the system in which the double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations have been considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields (parallel to an ambient magnetic field) and double layers in an expanding plasma are discussed.


2001 ◽  
Vol 19 (9) ◽  
pp. 1089-1094 ◽  
Author(s):  
A. Korth ◽  
Z. Y. Pu

Abstract. In this paper, we present an interpretation of the observed field-aligned acceleration events measured by GEOS-2 near the night-side synchronous orbit at substorm onsets (Chen et al., 2000). We show that field-aligned acceleration of ions (with pitch angle asymmetry) is closely related to strong short-lived electric fields in the Ey direction. The acceleration is associated with either rapid dipolarization or further stretching of local magnetic field lines. Theoretical analysis suggests that a centrifugal mechanism is a likely candidate for the parallel energization. Equatorward or anti-equatorward energization occurs when the tail current sheet is thinner tailward or earthward of the spacecraft, respectively. The magnetic field topology leading to anti-equatorward energization corresponds to a situation where the near-Earth tail undergoes further compression and the inner edge of the plasma sheet extends inwards as close as the night-side geosynchronous altitudes.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; plasma sheet; storms and sub-storms)


2004 ◽  
Vol 22 (4) ◽  
pp. 1233-1250 ◽  
Author(s):  
P. Janhunen ◽  
A. Olsson ◽  
H. Laakso

Abstract. The aim of the paper is to study how auroral potential structures close at high altitude. We analyse all electric field data collected by Polar on auroral field lines in 1996–2001 by integrating the electric field along the spacecraft orbit to obtain the plasma potential, from which we identify potential minima by an automatic method. From these we estimate the associated effective mapped-down electric field Ei, defined as the depth of the potential minimum divided by its half-width in the ionosphere. Notice that although we use the ionosphere as a reference altitude, the field Ei does not actually exist in the ionosphere but is just a convenient computational quantity. We obtain the statistical distribution of Ei as a function of altitude, magnetic local time (MLT), Kp index and the footpoint solar illumination condition. Surprisingly, we find two classes of electric field structures. The first class consists of the low-altitude potential structures that are presumably associated with inverted-V regions and discrete auroral arcs and their set of associated phenomena. We show that the first class exists only below ~3RE radial distance, and it occurs in all nightside MLT sectors (RE=Earth radius). The second class exists only above radial distance R=4RE and almost only in the midnight MLT sector, with a preference for high Kp values. Interestingly, in the middle altitudes (R=3–4RE) the number of potential minima is small, suggesting that the low and high altitude classes are not simple field-aligned extensions of each other. This is also underlined by the fact that statistically the high altitude structures seem to be substorm-related, while the low altitude structures seem to correspond to stable auroral arcs. The new finding of the existence of the two classes is important for theories of auroral acceleration, since it supports a closed potential structure model for stable arcs, while during substorms, different superposed processes take place that are associated with the disconnected high-altitude electric field structures. Key words. Magnetospheric physics (electric fields; auroral phenomena) – Space plasma physics (electrostatic structures)


2008 ◽  
Vol 26 (6) ◽  
pp. 1617-1639 ◽  
Author(s):  
D. V. Sarafopoulos

Abstract. We suggest a candidate physical mechanism, combining there dimensional structure and temporal development, which is potentially able to produce suprathermal populations and cross-tail current disruptions in the Earth's plasma sheet. At the core of the proposed process is the "akis" structure; in a thin current sheet (TCS) the stretched (tail-like) magnetic field lines locally terminate into a sharp tip around the tail midplane. At this sharp tip of the TCS, ions become non-adiabatic, while a percentage of electrons are accumulated and trapped: The strong and transient electrostatic electric fields established along the magnetic field lines produce suprathermal populations. In parallel, the tip structure is associated with field aligned and mutually attracted parallel filamentary currents which progressively become more intense and inevitably the structure collapses, and so does the local TCS. The mechanism is observationally based on elementary, almost autonomous and spatiotemporal entities that correspond each to a local thinning/dipolarization pair having duration of ~1 min. Energetic proton and electron populations do not occur simultaneously, and we infer that they are separately accelerated at local thinnings and dipolarizations, respectively. In one example energetic particles are accelerated without any dB/dt variation and before the substorm expansion phase onset. A particular effort is undertaken demonstrating that the proposed acceleration mechanism may explain the plasma sheet ratio Ti/Te≈7. All our inferences are checked by the highest resolution datasets obtained by the Geotail Energetic Particles and Ion Composition (EPIC) instrument. The energetic particles are used as the best diagnostics for the accelerating source. Near Earth (X≈10 RE) selected events support our basic concept. The proposed mechanism seems to reveal a fundamental building block of the substorm phenomenon and may be the basic process/structure, which is now missing, that might help explain the persistent, outstanding deficiencies in our physical description of magnetospheric substorms. The mechanism is tested, checked, and found consistent with substorm associated observations performed ~30 and 60 RE away from Earth.


2004 ◽  
Vol 22 (2) ◽  
pp. 511-525 ◽  
Author(s):  
K. Oksavik ◽  
F. Søraas ◽  
J. Moen ◽  
R. Pfaff ◽  
J. A. Davies ◽  
...  

Abstract. In this paper we discuss counterstreaming electrons, electric field turbulence, HF radar spectral width enhancements, and field-aligned currents in the southward IMF cusp region. Electric field and particle observations from the FAST spacecraft are compared with CUTLASS Finland spectral width enhancements and ground-based optical data from Svalbard during a meridional crossing of the cusp. The observed 630nm rayed arc (Type-1 cusp aurora) is associated with stepped cusp ion signatures. Simultaneous counterstreaming low-energy electrons on open magnetic field lines lead us to propose that such electrons may be an important source for rayed red arcs through pitch angle scattering in collisions with the upper atmosphere. The observed particle precipitation and electric field turbulence are found to be nearly collocated with the equatorward edge of the optical cusp, in a region where CUTLASS Finland also observed enhanced spectral width. The electric field turbulence is observed to extend far poleward of the optical cusp. The broad-band electric field turbulence corresponds to spatial scale lengths down to 5m. Therefore, we suggest that electric field irregularities are directly responsible for the formation of HF radar backscatter targets and may also explain the observed wide spectra. FAST also encountered two narrow highly structured field-aligned current pairs flowing near the edges of cusp ion steps. Key words. Ionosphere (electric fields and currents). Magnetosphere physics (magnetopause, cusp, and boundary layers; auroral phenomena)


Sign in / Sign up

Export Citation Format

Share Document