scholarly journals Rocket-borne investigation of auroral patches in the evening sector during substorm recovery

2003 ◽  
Vol 21 (3) ◽  
pp. 719-728 ◽  
Author(s):  
M. A. Danielides ◽  
A. Kozlovsky

Abstract. On 11 February 1997 at 08:36 UT after a substorm onset the Auroral Turbulence 2 sounding rocket was launched from Poker Flat Research Range, Alaska into a moderately active auroral region. This experiment has allowed us to investigate evening (21:00 MLT) auroral forms at the substorm recovery, which were discrete multiple auroral arcs stretched to, the east and southeast from the breakup region, and bright auroral patches propagating westward along the arcs like a luminosity wave, which is a typical feature of the disturbed arc. The rocket crossed an auroral arc of about 40 km width, stretched along southeast direction. Auroral patches and associated electric fields formed a 200 km long periodical structure, which propagated along the arc westward at a velocity of 3 km/s, whereas the ionospheric plasma velocity inside the arc was 300 m/s westward. The spatial periodicity in the rocket data was found from optical ground-based observations, from electric field in situ measurements, as well as from ground-based magnetic observations. The bright patches were co-located with equatorward plasma flow across the arc of the order of 200 m/s in magnitude, whereas the plasma flow tended to be poleward at the intervals between the patches, where the electric field reached the magnitude of up to 20 mV/m, and these maxima were co-located with the peaks in electron precipitations indicated by the electron counter on board the rocket. Pulsations of a 70-s period were observed on the ground in the eastern component of the magnetic field and this is consistent with the moving auroral patches and the north-south plasma flows associated with them. The enhanced patch-associated electric field and fast westward propagation suggest essential differences between evening auroral patches and those occurring in the morning ionosphere. We propose the wave that propagates along the plasma sheet boundary to be a promising mechanism for the evening auroral patches.Key words. Ionosphere (auroral ionosphere; electric fields and currents)

2002 ◽  
Vol 107 (A12) ◽  
pp. SIA 3-1-SIA 3-14 ◽  
Author(s):  
A. T. Aikio ◽  
T. Lakkala ◽  
A. Kozlovsky ◽  
P. J. S. Williams

2003 ◽  
Vol 21 (7) ◽  
pp. 1567-1575 ◽  
Author(s):  
S. E. Milan ◽  
N. Sato ◽  
M. Lester ◽  
Y. Murata ◽  
Y. Shinkai ◽  
...  

Abstract. Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC) and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.Key words. Ionosphere (ionospheric irregularities; electric fields and currents)


2005 ◽  
Vol 23 (7) ◽  
pp. 2531-2557 ◽  
Author(s):  
S. Figueiredo ◽  
G. T. Marklund ◽  
T. Karlsson ◽  
T. Johansson ◽  
Y. Ebihara ◽  
...  

Abstract. Two event studies are presented in this paper where intense convergent electric fields, with mapped intensities up to 1350 mV/m, are measured in the auroral upward current region by the Cluster spacecraft, at altitudes between 3 and 5 Earth radii. Both events are from May 2003, Southern Hemisphere, with equatorward crossings by the Cluster spacecraft of the pre-midnight auroral oval. Event 1 occurs during the end of the recovery phase of a strong substorm. A system of auroral arcs associated with convergent electric field structures, with a maximum perpendicular potential drop of about ~10 kV, and upflowing field-aligned currents with densities of 3 µA/m2 (mapped to the ionosphere), was detected at the boundary between the Plasma Sheet Boundary Layer (PSBL) and the Plasma Sheet (PS). The auroral arc structures evolve in shape and in magnitude on a timescale of tens of minutes, merging, broadening and intensifying, until finally fading away after about 50 min. Throughout this time, both the PS region and the auroral arc structure in its poleward part remain relatively fixed in space, reflecting the rather quiet auroral conditions during the end of the substorm. The auroral upward acceleration region is shown for this event to extend beyond 3.9 Earth radii altitude. Event 2 occurs during a more active period associated with the expansion phase of a moderate substorm. Images from the Defense Meteorological Satellite Program (DMSP) F13 spacecraft show that the Cluster spacecraft crossed the horn region of a surge-type aurora. Conjugated with the Cluster spacecraft crossing above the surge horn, the South Pole All Sky Imager recorded the motion and the temporal evolution of an east-west aligned auroral arc, 30 to 50 km wide. Intense electric field variations are measured by the Cluster spacecraft when crossing above the auroral arc structure, collocated with the density gradient at the PS poleward boundary, and coupled to intense upflowing field-aligned currents with mapped densities of up to 20 µA/m2. The surge horn consists of multiple arc structures which later merge into one structure and intensify at the PS poleward boundary. The surge horn and the associated PS region moved poleward with a velocity at the ionospheric level of 0.5 km/s, following the large-scale poleward expansion of the auroral oval associated with the substorm expansion phase. Keywords. Ionosphere (Ionosphere-magnetosphere interacctions; Electric fields and currents; Particle acceleration)


2004 ◽  
Vol 22 (4) ◽  
pp. 1233-1250 ◽  
Author(s):  
P. Janhunen ◽  
A. Olsson ◽  
H. Laakso

Abstract. The aim of the paper is to study how auroral potential structures close at high altitude. We analyse all electric field data collected by Polar on auroral field lines in 1996–2001 by integrating the electric field along the spacecraft orbit to obtain the plasma potential, from which we identify potential minima by an automatic method. From these we estimate the associated effective mapped-down electric field Ei, defined as the depth of the potential minimum divided by its half-width in the ionosphere. Notice that although we use the ionosphere as a reference altitude, the field Ei does not actually exist in the ionosphere but is just a convenient computational quantity. We obtain the statistical distribution of Ei as a function of altitude, magnetic local time (MLT), Kp index and the footpoint solar illumination condition. Surprisingly, we find two classes of electric field structures. The first class consists of the low-altitude potential structures that are presumably associated with inverted-V regions and discrete auroral arcs and their set of associated phenomena. We show that the first class exists only below ~3RE radial distance, and it occurs in all nightside MLT sectors (RE=Earth radius). The second class exists only above radial distance R=4RE and almost only in the midnight MLT sector, with a preference for high Kp values. Interestingly, in the middle altitudes (R=3–4RE) the number of potential minima is small, suggesting that the low and high altitude classes are not simple field-aligned extensions of each other. This is also underlined by the fact that statistically the high altitude structures seem to be substorm-related, while the low altitude structures seem to correspond to stable auroral arcs. The new finding of the existence of the two classes is important for theories of auroral acceleration, since it supports a closed potential structure model for stable arcs, while during substorms, different superposed processes take place that are associated with the disconnected high-altitude electric field structures. Key words. Magnetospheric physics (electric fields; auroral phenomena) – Space plasma physics (electrostatic structures)


2004 ◽  
Vol 22 (2) ◽  
pp. 511-525 ◽  
Author(s):  
K. Oksavik ◽  
F. Søraas ◽  
J. Moen ◽  
R. Pfaff ◽  
J. A. Davies ◽  
...  

Abstract. In this paper we discuss counterstreaming electrons, electric field turbulence, HF radar spectral width enhancements, and field-aligned currents in the southward IMF cusp region. Electric field and particle observations from the FAST spacecraft are compared with CUTLASS Finland spectral width enhancements and ground-based optical data from Svalbard during a meridional crossing of the cusp. The observed 630nm rayed arc (Type-1 cusp aurora) is associated with stepped cusp ion signatures. Simultaneous counterstreaming low-energy electrons on open magnetic field lines lead us to propose that such electrons may be an important source for rayed red arcs through pitch angle scattering in collisions with the upper atmosphere. The observed particle precipitation and electric field turbulence are found to be nearly collocated with the equatorward edge of the optical cusp, in a region where CUTLASS Finland also observed enhanced spectral width. The electric field turbulence is observed to extend far poleward of the optical cusp. The broad-band electric field turbulence corresponds to spatial scale lengths down to 5m. Therefore, we suggest that electric field irregularities are directly responsible for the formation of HF radar backscatter targets and may also explain the observed wide spectra. FAST also encountered two narrow highly structured field-aligned current pairs flowing near the edges of cusp ion steps. Key words. Ionosphere (electric fields and currents). Magnetosphere physics (magnetopause, cusp, and boundary layers; auroral phenomena)


2000 ◽  
Vol 18 (9) ◽  
pp. 1097-1107 ◽  
Author(s):  
E. Borälv ◽  
P. Eglitis ◽  
H. J. Opgenoorth ◽  
E. Donovan ◽  
G. Reeves ◽  
...  

Abstract. We have investigated the time delay between substorm onset and related reactions in the dawn and dusk ionospheric electrojets, clearly separated from the nightside located substorm current wedge by several hours in MLT. We looked for substorm onsets occurring over Greenland, where the onset was identified by a LANL satellite and DMI magnetometers located on Greenland. With this setup the MARIA magnetometer network was located at dusk, monitoring the eastward electrojet, and the IMAGE chain at dawn, for the westward jet. In the first few minutes following substorm onset, sudden enhancements of the electrojets were identified by looking for rapid changes in magnetograms. These results show that the speed of information transfer between the region of onset and the dawn and dusk ionosphere is very high. A number of events where the reaction seemed to preceed the onset were explained by either unfavorable instrument locations, preventing proper onset timing, or by the inner magnetosphere's reaction to the Earthward fast flows from the near-Earth neutral line model. Case studies with ionospheric coherent (SuperDARN) and incoherent (EISCAT) radars have been performed to see whether a convection-induced electric field or enhanced conductivity is the main agent for the reactions in the electrojets. The results indicate an imposed electric field enhancement.Key words: Ionosphere (auroral ionosphere; electric fields and currents) - Magnetospheric physics (storms and substorms)


2004 ◽  
Vol 22 (1) ◽  
pp. 125-140 ◽  
Author(s):  
A. Marchaudon ◽  
J.-C. Cerisier ◽  
O. Amm ◽  
M. Lester ◽  
C. W. Carlson ◽  
...  

Abstract. On 12 January 2000, during a northward IMF period, two successive conjunctions occur between the CUTLASS SuperDARN radar pair and the two satellites Ørsted and FAST. This situation is used to describe and model the electrodynamic of a nightside meso-scale arc associated with a convection shear. Three field-aligned current sheets, one upward and two downward on both sides, are observed. Based on the measurements of the parallel currents and either the conductance or the electric field profile, a model of the ionospheric current closure is developed along each satellite orbit. This model is one-dimensional, in a first attempt and a two-dimensional model is tested for the Ørsted case. These models allow one to quantify the balance between electric field gradients and ionospheric conductance gradients in the closure of the field-aligned currents. These radar and satellite data are also combined with images from Polar-UVI, allowing for a description of the time evolution of the arc between the two satellite passes. The arc is very dynamic, in spite of quiet solar wind conditions. Periodic enhancements of the convection and of electron precipitation associated with the arc are observed, probably associated with quasi-periodic injections of particles due to reconnection in the magnetotail. Also, a northward shift and a reorganisation of the precipitation pattern are observed, together with a southward shift of the convection shear. Key words. Ionosphere (auroral ionosphere; electric fields and currents; particle precipitation) – Magnetospheric physics (magnetosphere-ionosphere interactions)


2007 ◽  
Vol 25 (8) ◽  
pp. 1791-1799 ◽  
Author(s):  
J. C. Foster ◽  
W. Rideout

Abstract. In the early phases of a geomagnetic storm, the low and mid-latitude ionosphere are greatly perturbed. Large SAPS electric fields map earthward from the perturbed ring current overlapping and eroding the outer plasmasphere and mid-latitude ionosphere, drawing out extended plumes of storm enhanced density (SED). We use combined satellite and ground-based observations to investigate the degree of magnetic conjugacy associated with specific features of the stormtime ionospheric perturbation. We find that many ionospheric disturbance features exhibit degrees of magnetic conjugacy and simultaneity which implicate the workings of electric fields. TEC enhancements on inner-magnetospheric field lines at the base of the SED plumes exhibit localized and longitude-dependent features which are not strictly magnetic conjugate. The SED plumes streaming away from these source regions closely follow magnetic conjugate paths. SED plumes can be used as a tracer of the location and strength of disturbance electric fields. The SED streams of cold plasma from lower latitudes enter the polar caps near noon, forming conjugate tongues of ionization over the polar regions. SED plumes exhibit close magnetic conjugacy, confirming that SED is a convection electric field dominated effect. Several conclusions are reached: 1) The SED plume occurs in magnetically-conjugate regions in both hemispheres. 2) The position of the sharp poleward edge of the SED plume is closely conjugate. 3) The SAPS electric field is observed in magnetically conjugate regions (SAPS channel). 4) The strong TEC enhancement at the base of the SED plume in the north American sector is more extensive than in its magnetic conjugate region. 5) The entry of the SED plume into the polar cap near noon, forming the polar tongue of ionization (TOI), is seen in both hemispheres in magnetically-conjugate regions.


2009 ◽  
Vol 27 (7) ◽  
pp. 2661-2673 ◽  
Author(s):  
A. T. Aikio ◽  
A. Selkälä

Abstract. Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat) from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox) and from similar sunspot conditions (about 1.5 years before the sunspot minimum) providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution. All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity. An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3). In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to auroral arcs as a result of ionosphere-magnetosphere coupling, as discussed by Aikio et al. (2004) In addition, a part of the anticorrelation may come from polarization effects inside high-conductance regions, e.g. auroral arcs. These observations confirm the speculated effect of small scale electrodynamics, which is not included in most of the global modeling efforts of Joule heating rate.


Sign in / Sign up

Export Citation Format

Share Document