scholarly journals Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia

2009 ◽  
Vol 27 (1) ◽  
pp. 303-312 ◽  
Author(s):  
G. Li ◽  
B. Ning ◽  
L. Liu ◽  
W. Wan ◽  
J. Y. Liu

Abstract. The dependence of plasma bubble occurrence in the eveningside ionosphere, with magnetic activity during the period years 2001–2004, is studied here based on the TEC observations gathered by ground-based GPS receivers which are located in the equatorial and low-latitude regions in East Asia. The observed plasma bubbles consist of the plasma-bubble events in the equatorial (stations GUAM, PIMO and KAYT), and low-latitude regions (stations WUHN, DAEJ and SHAO). It is shown that most equatorial plasma-bubble events commence at 20:00 LT, and may last for >60 min. The magnetic activity appears to suppress the generation of equatorial plasma bubbles with a time delay of more than 3 h (4–9 h). While in the low-latitude regions, most plasma-bubble events commence at about 23:00 LT and last for <45 min. The best correlation between Kp and low-latitude plasma-bubble occurrence is found with an 8–9 h delay, a weak correlation exists for time delays of 6–7 h. This probably indicates that over 3 h delayed disturbance dynamo electric fields obviously inhibit the development of plasma bubbles in the pre-midnight sector.

Author(s):  
Dada P. Nade ◽  
Swapnil S. Potdar ◽  
Rani P. Pawar

The plasma irregularities have been frequently observed in the F-region, at low latitude regions, due to the instability processes occurring in the ionosphere. The depletions in electron density, as compared to the background density, is a signature of the plasma irregularities. These irregularities are also known as the “equatorial plasma bubble” (EPB). These EPBs can measure by the total electron content (TEC) using GPS receiver and by images of the nightglow OI 630.0 nm emissions using all sky imager (ASI). The current chapter is based on the review on the signature of the EPBs in TEC and ASI. measurements. We have also discussed the importance of the study of EPBs.


2016 ◽  
Vol 59 (2) ◽  
Author(s):  
Parashram T. Patil ◽  
Rupesh N. Ghodpage ◽  
Alok K. Taori ◽  
Rohit P. Patil ◽  
Subramanian Gurubaran ◽  
...  

<p>Over 53 nights of all sky airglow imager data collected during January-April 2012 from the low latitude station Kolhapur (16.68°N, 74.26°E; 10.6°N dip latitude) have been analyzed to study the F-region dynamics through the imaging of OI 630 nm emission line. The observed night airglow data were supported by the ionosonde measurements from Tirunelveli (8.7°N, 77.8°E; 0.51°N dip latitude). Well defined magnetic field aligned depletions were observed during the observation period. Out of 53 nights, 40 nights exhibited the occurrence of north-south aligned equatorial plasma bubbles. These plasma bubbles were found moving towards east with drift speed in range between 70 to 200 m s<span><sup>-1</sup></span>. We have analyzed the zonal drift velocity variation and relation of bubble occurrence with the base height of the ionosphere together with the effects of the geomagnetic Ap and solar flux F<span><sub>10.7</sub></span> cm index in its first appearance.</p>


2007 ◽  
Vol 25 (10) ◽  
pp. 2159-2165 ◽  
Author(s):  
R. Pottelette ◽  
M. Malingre ◽  
J. J. Berthelier ◽  
E. Seran ◽  
M. Parrot

Abstract. Recent observations performed by the French DEMETER satellite at altitudes of about 710 km suggest that the generation of equatorial plasma bubbles correlates with the presence of filamentary structures of field aligned currents carried by Alfvén waves. These localized structures are located at the bubble edges. We study the dynamics of the equatorial plasma bubbles, taking into account that their motion is dictated by gravity driven and displacement currents. Ion-polarization currents appear to be crucial for the accurate description of the evolution of plasma bubbles in the high altitude ionosphere. During their eastward/westward motion the bubbles intersect gravity driven currents flowing transversely with respect to the background magnetic field. The circulation of these currents is prohibited by large density depressions located at the bubble edges acting as perfect insulators. As a result, in these localized regions the transverse currents have to be locally closed by field aligned currents. Such a physical process generates kinetic Alfvén waves which appear to be stationary in the plasma bubble reference frame. Using a two-dimensional model and "in situ" wave measurements on board the DEMETER spacecraft, we give estimates for the magnitude of the field aligned currents and the associated Alfvén fields.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Cesar E. Valladares ◽  
Matthew A. Hei

This scientific report presents the results of a dedicated experiment that was conducted within the framework of the Low-latitude ionospheric Sensor Network (LISN) observatory to measure the characteristics of medium-scale (hundreds of km) Traveling Ionospheric Disturbances (TIDs) as they transit through the low-latitude ionosphere. A small array of 3 GPS receivers separated by 4-5 km placed in a triangular configuration was installed near Huancayo in Peru possessing several characteristics of a radio-interferometer. During the campaign days, 17–30 July 2008, TIDs were observed daily. On July 20, 2008 between 22 and 24 UT several TIDs moved across the small array of GPS receivers with a velocity near 130 m/s, were directed northward and had wavelengths close to 450 km. Other GPS receivers that were operating hundreds of km away from Huancayo show also similar TEC traces and provide a phase velocity equal to 150 m/s. This value was measured using the GPS at Piura, Cuzco and Huancayo. Based on this positive result, we conclude that small and/or regional arrays of GPS receivers can be used at low latitudes to study the role that gravity waves may have on seeding plasma bubbles.


2015 ◽  
Vol 20 (1) ◽  
pp. 20-27
Author(s):  
Narayan P. Chapagain

Deep plasma depletions during the nighttime period in the equatorial ionosphere (referred to as equatorial plasma bubbles –EPBs) can significantly affect communications and navigation systems. In this study, we present the image measurements of plasma bubble from Christmas Island (2.1°N, 157.4°W, dip latitude 2.8°N) in the central Pacific Ocean. These observations were made during September-October 1995 using a Utah State University (USU) CCD imaging system measured at ~280 km altitude. Well-defined magnetic field-aligned plasma depletions were observed for 18 nights, including strong post-midnight fossilized structures, enabling detailed measurements of their morphology and dynamics. We also estimate zonal velocity of the plasma bubbles from available images. The zonal drift velocity of the EPBs is a very important parameter for the understanding and modeling of the electrodynamics of the equatorial ionosphere and for the predictions of ionospheric irregularities. The eastward zonal drift velocities were around 90-100 m/s prior to local midnight, and decreases during the post-midnight period that persisted until dawn.Journal of Institute of Science and Technology, 2015, 20(1): 20-27


2004 ◽  
Vol 22 (9) ◽  
pp. 3109-3121 ◽  
Author(s):  
J. J. Makela ◽  
B. M. Ledvina ◽  
M. C. Kelley ◽  
P. M. Kintner

Abstract. Over 300 nights of airglow and GPS scintillation data collected between January 2002 and August 2003 (a period near solar maximum) from the Haleakala Volcano, Hawaii are analyzed to obtain the seasonal trends for the occurrence of equatorial plasma bubbles in the Pacific sector (203° E). A maximum probability for bubble development is seen in the data in April (45%) and September (83%). A broad maximum of occurrence is seen in the data from June to October (62%). Many of the bubbles observed from June through August occur later in the evening, and, as seen in the optical data, tend to be "fossilized". This suggests that the active growth region during these months is to the west of the observing location. These seasonal trends are consistent with previous data sets obtained both from other ground-based and satellite studies of the occurrence of equatorial bubbles in the Pacific sector. However, our data suggests a much greater probability of bubble occurrence than is seen in other data sets, with bubbles observed on over 40% of the nights studied.


2017 ◽  
Vol 60 (11) ◽  
pp. 2452-2463 ◽  
Author(s):  
A.K. Sharma ◽  
O.B. Gurav ◽  
G.A. Chavan ◽  
H.P. Gaikwad ◽  
R.N. Ghodpage ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document