scholarly journals Solar eclipse effects of 22 July 2009 on Sporadic-E

2010 ◽  
Vol 28 (2) ◽  
pp. 353-357 ◽  
Author(s):  
G. Chen ◽  
Z. Zhao ◽  
C. Zhou ◽  
G. Yang ◽  
Y. Zhang

Abstract. The total solar eclipse of 22 July 2009, was visible from some regions of China and the intense sporadic-E (Es) that broke out during the solar eclipse period over the eastern China provided a unique chance to study solar eclipse effects on the Es-layer. The ground based high-frequency (HF) vertical-incidence and oblique-incidence backscatter radio systems in Wuhan and an HF oblique receivers located in Suzhou were operated to detect the Es-layer. The vertical, oblique and backscatter ionograms of 22 and 23 July were recorded, processed and analyzed. The analyzing results show that the critical frequency of Es, the hop number and power of the rays transmitted from Wuhan to Suzhou as well as the Doppler frequency shift of the one-hop oblique-incidence waves reflected by the Es-layer all increased during the solar eclipse period. These variations are displayed in the paper and explained to be induced by the wind-field, which is produced by the powerful meridional air flows from the sunshine region to the moon's shadow.

2006 ◽  
Author(s):  
V. Yu. Teplov ◽  
V. V. Bochkarev ◽  
R. R. Latipov ◽  
I. R. Petrova

2021 ◽  
Vol 26 (4) ◽  
pp. 326-343
Author(s):  
L. F. Chernogor ◽  
◽  
K. P. Garmash ◽  
Y. H. Zhdanko ◽  
S. G. Leus ◽  
...  

Purpose: Solar eclipses pertain to high-energy sources of disturbance in the subsystems of the Sun–interplanetary-medium–magnetosphere–ionosphere–atmosphere–Earth and the Earth–atmosphere–ionosphere–magnetosphere systems. During the solar eclipse, the coupling between the subsystems in these systems activates, and the parameters of the dynamic processes become disturbed. Investigation of these processes contributes to understanding of the structure and dynamics of the subsystems. The ionospheric response to the solar eclipse depends on the season, local time, magnitude of the solar eclipse, phase of the solar cycle, the observation site, the state of space weather, etc. Therefore, the study of the effects, which each new solar eclipse has on the ionosphere remains an urgent geophysics and radio physics problem. The purpose of this paper is to describe the radio wave characteristics and ionospheric parameters, which accompanied the partial solar eclipse of 10 June 2021 over the City of Kharkiv. Design/methodology/approach: To make observations, the means of the HF Doppler measurements at vertical and oblique incidence available at the V. N. Karazin Kharkiv National University Radiophysical Observatory were employed. The data obtained at the “Lviv” Magnetic Observatory were used for making intercomparison. Findings: The radiophysical observations have been made of the dynamic processes acting in the ionosphere during the solar eclipse of 10 June 2021 and on the reference days. The temporal variations in the Doppler frequency shift observed at vertical and oblique radio paths have been found to be, as a whole, similar. Generally speaking, the Doppler spectra over these radio propagation paths were different. Over the oblique radio paths, the number of rays was greater. The solar eclipse was accompanied by wave activity enhancement in the atmosphere and ionosphere. At least three wave trains were observed. The values of the periods (about 5–12 min) and the relative amplitudes of perturbations in the electron density (δN≈0.3–0.6 %) give evidence that the wave disturbances were caused by atmospheric gravity waves. The amplitude of the 6–8-min period geomagnetic variations has been estimated to be 0.5–1 nT. Approximately the same value has been recorded in the X component of the geomagnetic field at the nearest Magnetic Observatory. The aperiodic effect of the solar eclipse has appeared to be too small (less than 0.01 Hz) to be observed confidently. The smallness of the effect was predetermined by an insignificant magnitude of the partial eclipse over the City of Kharkiv (no more than 0.11). Conclusions: The features of the solar eclipse of 10 June 2021 include an insignificant magnitude of the aperiodic effect and an enhancement in wave activity in the atmosphere and ionosphere. Key words: solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity wave


Author(s):  
Sergey Chumarov
Keyword(s):  

The modeling features of high-frequency amplifiers are considered. The urgency of the development of such amplifiers is justified and the application areas are indicated. The stages of design of amplifiers are described in detail.


2021 ◽  
pp. 2000576
Author(s):  
Fuyong Yue ◽  
A. Aadhi ◽  
Riccardo Piccoli ◽  
Vincenzo Aglieri ◽  
Roberto Macaluso ◽  
...  

2019 ◽  
Vol 11 (6) ◽  
pp. 1-12
Author(s):  
Jinye Li ◽  
Yuan Yao ◽  
Guozhang Wu ◽  
Jiaqing Hou ◽  
Wenqi Yu ◽  
...  

2007 ◽  
Vol 3 (S248) ◽  
pp. 290-291 ◽  
Author(s):  
A. Vecchiato ◽  
M. G. Lattanzi ◽  
M. Gai ◽  
R. Morbidelli

AbstractGAME (Gamma Astrometric Measurement Experiment) is a concept for an experiment whose goal is to measure from space the γ parameter of the Parameterized Post-Newtonian formalism, by means of a satellite orbiting at 1 AU from the Sun and looking as close as possible to its limb. This technique resembles the one used during the solar eclipse of 1919, when Dyson, Eddington and collaborators measured for the first time the gravitational bending of light. Simple estimations suggest that, possibly within the budget of a small mission, one could reach the 10−6level of accuracy with ~106observations of relatively bright stars at about 2° apart from the Sun. Further simulations show that this result could be reached with only 20 days of measurements on stars ofV≤ 17 uniformly distributed. A quick look at real star densities suggests that this result could be greatly improved by observing particularly crowded regions near the galactic center.


Sign in / Sign up

Export Citation Format

Share Document