scholarly journals Thrust calculation of electric solar wind sail by particle-in-cell simulation

2016 ◽  
Vol 34 (9) ◽  
pp. 845-855 ◽  
Author(s):  
Kento Hoshi ◽  
Hirotsugu Kojima ◽  
Takanobu Muranaka ◽  
Hiroshi Yamakawa

Abstract. In this study, thrust characteristics of an electric solar wind sail were numerically evaluated using full three-dimensional particle-in-cell (PIC) simulation. The thrust obtained from the PIC simulation was lower than the thrust estimations obtained in previous studies. The PIC simulation indicated that ambient electrons strongly shield the electrostatic potential of the tether of the sail, and the strong shield effect causes a greater thrust reduction than has been obtained in previous studies. Additionally, previous expressions of the thrust estimation were modified by using the shielded potential structure derived from the present simulation results. The modified thrust estimation agreed very well with the thrust obtained from the PIC simulation.

Plasma ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Hiroki Hasegawa ◽  
Seiji Ishiguro

This study has demonstrated kinetic behaviors on the plasma filament propagation with the three-dimensional (3D) Particle-in-Cell (PIC) simulation. When the ion-to-electron temperature ratio T i / T e is higher, the poloidal symmetry breaking in the filament propagation occurs. The poloidal symmetry breaking is thought to be induced by the unbalanced potential structure that arises from the effect of the gyro motion of plasma particles.


2019 ◽  
Vol 85 (1) ◽  
Author(s):  
Raymond J. Walker ◽  
Giovanni Lapenta ◽  
Jean Berchem ◽  
Mostafa El-Alaoui ◽  
David Schriver

We have combined global magnetohydrodynamic (MHD) simulations of the solar wind and magnetosphere interaction with an implicit particle-in-cell simulation (PIC) and used this approach to model magnetic reconnection at both the dayside magnetopause and in the magnetotail plasma sheet. In this approach, we first model the magnetospheric configuration driven by the solar wind using the MHD simulation. At a time of interest (usually when a thin current sheet has formed in the MHD simulation), we load a large particle-in-cell simulation with plasma and fields based on the MHD state. We use the MHD results to set the boundary conditions on the PIC simulation. The coupling between the two models is one way – the PIC results do not change the MHD results. In these calculations, we use the UCLA global MHD code and the iPic3D implicit particle-in-cell code. In this paper we describe this technique in detail. As an example of this approach, we present PIC results on reconnection in the magnetotail during a magnetospheric substorm.


2020 ◽  
Author(s):  
Raymond Walker ◽  
Giovanni Lapenta ◽  
Mostafa El-Alaoui ◽  
Jean Berchem ◽  
Robert Richard ◽  
...  

<p>Magnetic reconnection leads to fast streaming of electrons and ions away from the reconnection site. We have used an implicit particle-in-cell simulation (iPic3D) embedded within a global MHD simulation of the solar wind and magnetosphere interaction to investigate the evolution of electrons and ion flows in the magnetotail. We first ran the MHD simulation driven by solar wind observations and then used the MHD results to set the initial and boundary conditions for the PIC simulation. Then we let the PIC state evolve and investigated the electron and ion motion. Within a few seconds of the onset of reconnection, electrons near the reconnection site stream earthward at 500-700km/s while the ions move at less than 100 km/s. For electrons, magnetic trapping occurs very close to the reconnection site and they move mostly in the X<sub>GSM </sub>direction at the <strong>E</strong>×<strong>B/</strong>B<sup>2</sup> velocity.  Ion trapping occurs several Earth radii from the reconnection site about 100 s after the start of reconnection where both the electrons and ions move together at ~<strong>E</strong>×<strong>B/</strong>B<sup>2</sup> velocity. Although the particles are moving at the <strong>E</strong> × <strong>B</strong>/B<sup>2</sup> velocity, they are in a state defined by the kinetic physics not the state that exists in the MHD simulation.</p>


2021 ◽  
Author(s):  
Seiji Zenitani ◽  
Tsunehiko Kato

<div> <div> <div> <p> Particle-in-cell (PIC) simulation has long been used in theoretical plasma physics. In PIC simulation, the Boris solver is the de-facto standard for solving particle motion, and it has been used over a half century. Meanwhile, there is a continuous demand for better particle solvers. In this contribution, we introduce a family of Boris-type schemes for integrating the motion of charged particles. We call the new solvers the multiple Boris solvers. The new solvers essentially repeat the standard two-step procedure multiple times in the Lorentz-force part, and we derive a single-step form for arbitrary subcycle number <em>n</em>. The new solvers give <em>n<sup>2</sup></em> times smaller errors, allow larger timesteps, but they are computationally affordable for moderate <em>n</em>. The multiple Boris solvers also reduce a numerical error in long-term plasma motion in a relativistic magnetized flow.</p> </div> </div> </div><p>Reference:</p><ul><li>S. Zenitani & T. N. Kato, <em>Multiple Boris integrators for particle-in-cell simulation</em>, Comput. Phys. Commun. <strong>247</strong>, 106954, doi:10.1016/j.cpc.2019.106954 (2020)</li> </ul>


2009 ◽  
Vol 27 (8) ◽  
pp. 3089-3100 ◽  
Author(s):  
P. Janhunen

Abstract. An electric solar wind sail is a recently introduced propellantless space propulsion method whose technical development has also started. The electric sail consists of a set of long, thin, centrifugally stretched and conducting tethers which are charged positively and kept in a high positive potential of order 20 kV by an onboard electron gun. The positively charged tethers deflect solar wind protons, thus tapping momentum from the solar wind stream and producing thrust. The amount of obtained propulsive thrust depends on how many electrons are trapped by the potential structures of the tethers, because the trapped electrons tend to shield the charged tether and reduce its effect on the solar wind. Here we present physical arguments and test particle calculations indicating that in a realistic three-dimensional electric sail spacecraft there exist a natural mechanism which tends to remove the trapped electrons by chaotising their orbits and causing them to eventually collide with the conducting tethers. We present calculations which indicate that if these mechanisms were able to remove trapped electrons nearly completely, the electric sail performance could be about five times higher than previously estimated, about 500 nN/m, corresponding to 1 N thrust for a baseline construction with 2000 km total tether length.


2015 ◽  
Vol 33 (12) ◽  
pp. 1507-1512 ◽  
Author(s):  
P. Janhunen

Abstract. The solar wind electric sail (E-sail) is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC) simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hybrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number of trapped electrons which still behaves in a physically meaningful way in the sense of producing not more than one solar wind ion deflection shock upstream of the tether. By this prescription we obtain thrust per tether length values that are in line with earlier estimates, although somewhat smaller. We conclude that the Boltzmann PIC simulation is a new tool for simulating the E-sail thrust. This tool enables us to calculate solutions rapidly and allows to easily study different scenarios for trapped electrons.


2020 ◽  
Author(s):  
DongSheng Cai ◽  
Bertrand Lembege

<p> CLUSTER experimental observations of  Lavraud et al. (2005) have evidenced the presence of a particular layer (so –called herein Alfven Transition Layer or ATL) almost adjacent to the upper edge of the stagnant exterior cusp (SEC), through which the plasma flow transits from super-(from magnetosheath) to sub- (to SEC) Alfvenic regime as the interplanetary magnetic field (IMF) is northward. Three dimensional globa PIC simulations have been recently used  (Cai et al., 2015) to analyze the main features of the cusp for an IMF configuration similar that in the observations. These simulations have allowed us to complete the global view of the cusp region  (in particular the features not accessible by MHD approach).  A  detailed analysis has allowed to retrieve the features of the ATL which reveals to be associated to the complicated 3D particles entry into the cusp region and exhibit an internal conic depletion region (CDR) where the ion fluxes concentrate and are very strong (which suggests very local ion precipitation). Moreover, simulation results show that the ATL expands towards areas out and even far from the cusp region and outside the meridian plane.</p><p>                     In the present work, the study is extended for different Ma regimes of the solar wind, as the IMF stays in northward  configuration. Results show the impact of this Ma variation on the 3D features of the overall magnetosphere and in particular on the cusp region, i.e. (i) on the 3D ATL structures/spatial scales, (ii) on the extension of the region surrounded by the ATL, and (iii) on the structures, the spatial scales and the dynamics of the CDR itself.</p><p> </p><p> </p>


1999 ◽  
Vol 6 (2) ◽  
pp. 603-613 ◽  
Author(s):  
R. W. Lemke ◽  
T. C. Genoni ◽  
T. A. Spencer

Sign in / Sign up

Export Citation Format

Share Document