Embedding particle-in-cell simulations in global magnetohydrodynamic simulations of the magnetosphere

2019 ◽  
Vol 85 (1) ◽  
Author(s):  
Raymond J. Walker ◽  
Giovanni Lapenta ◽  
Jean Berchem ◽  
Mostafa El-Alaoui ◽  
David Schriver

We have combined global magnetohydrodynamic (MHD) simulations of the solar wind and magnetosphere interaction with an implicit particle-in-cell simulation (PIC) and used this approach to model magnetic reconnection at both the dayside magnetopause and in the magnetotail plasma sheet. In this approach, we first model the magnetospheric configuration driven by the solar wind using the MHD simulation. At a time of interest (usually when a thin current sheet has formed in the MHD simulation), we load a large particle-in-cell simulation with plasma and fields based on the MHD state. We use the MHD results to set the boundary conditions on the PIC simulation. The coupling between the two models is one way – the PIC results do not change the MHD results. In these calculations, we use the UCLA global MHD code and the iPic3D implicit particle-in-cell code. In this paper we describe this technique in detail. As an example of this approach, we present PIC results on reconnection in the magnetotail during a magnetospheric substorm.

2020 ◽  
Author(s):  
Raymond Walker ◽  
Giovanni Lapenta ◽  
Mostafa El-Alaoui ◽  
Jean Berchem ◽  
Robert Richard ◽  
...  

<p>Magnetic reconnection leads to fast streaming of electrons and ions away from the reconnection site. We have used an implicit particle-in-cell simulation (iPic3D) embedded within a global MHD simulation of the solar wind and magnetosphere interaction to investigate the evolution of electrons and ion flows in the magnetotail. We first ran the MHD simulation driven by solar wind observations and then used the MHD results to set the initial and boundary conditions for the PIC simulation. Then we let the PIC state evolve and investigated the electron and ion motion. Within a few seconds of the onset of reconnection, electrons near the reconnection site stream earthward at 500-700km/s while the ions move at less than 100 km/s. For electrons, magnetic trapping occurs very close to the reconnection site and they move mostly in the X<sub>GSM </sub>direction at the <strong>E</strong>×<strong>B/</strong>B<sup>2</sup> velocity.  Ion trapping occurs several Earth radii from the reconnection site about 100 s after the start of reconnection where both the electrons and ions move together at ~<strong>E</strong>×<strong>B/</strong>B<sup>2</sup> velocity. Although the particles are moving at the <strong>E</strong> × <strong>B</strong>/B<sup>2</sup> velocity, they are in a state defined by the kinetic physics not the state that exists in the MHD simulation.</p>


2016 ◽  
Vol 34 (9) ◽  
pp. 845-855 ◽  
Author(s):  
Kento Hoshi ◽  
Hirotsugu Kojima ◽  
Takanobu Muranaka ◽  
Hiroshi Yamakawa

Abstract. In this study, thrust characteristics of an electric solar wind sail were numerically evaluated using full three-dimensional particle-in-cell (PIC) simulation. The thrust obtained from the PIC simulation was lower than the thrust estimations obtained in previous studies. The PIC simulation indicated that ambient electrons strongly shield the electrostatic potential of the tether of the sail, and the strong shield effect causes a greater thrust reduction than has been obtained in previous studies. Additionally, previous expressions of the thrust estimation were modified by using the shielded potential structure derived from the present simulation results. The modified thrust estimation agreed very well with the thrust obtained from the PIC simulation.


2021 ◽  
Author(s):  
Seiji Zenitani ◽  
Tsunehiko Kato

<div> <div> <div> <p> Particle-in-cell (PIC) simulation has long been used in theoretical plasma physics. In PIC simulation, the Boris solver is the de-facto standard for solving particle motion, and it has been used over a half century. Meanwhile, there is a continuous demand for better particle solvers. In this contribution, we introduce a family of Boris-type schemes for integrating the motion of charged particles. We call the new solvers the multiple Boris solvers. The new solvers essentially repeat the standard two-step procedure multiple times in the Lorentz-force part, and we derive a single-step form for arbitrary subcycle number <em>n</em>. The new solvers give <em>n<sup>2</sup></em> times smaller errors, allow larger timesteps, but they are computationally affordable for moderate <em>n</em>. The multiple Boris solvers also reduce a numerical error in long-term plasma motion in a relativistic magnetized flow.</p> </div> </div> </div><p>Reference:</p><ul><li>S. Zenitani & T. N. Kato, <em>Multiple Boris integrators for particle-in-cell simulation</em>, Comput. Phys. Commun. <strong>247</strong>, 106954, doi:10.1016/j.cpc.2019.106954 (2020)</li> </ul>


2015 ◽  
Vol 33 (12) ◽  
pp. 1507-1512 ◽  
Author(s):  
P. Janhunen

Abstract. The solar wind electric sail (E-sail) is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC) simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hybrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number of trapped electrons which still behaves in a physically meaningful way in the sense of producing not more than one solar wind ion deflection shock upstream of the tether. By this prescription we obtain thrust per tether length values that are in line with earlier estimates, although somewhat smaller. We conclude that the Boltzmann PIC simulation is a new tool for simulating the E-sail thrust. This tool enables us to calculate solutions rapidly and allows to easily study different scenarios for trapped electrons.


2014 ◽  
Vol 32 (3) ◽  
pp. 399-407 ◽  
Author(s):  
Mohammad Ghorbanalilu ◽  
Elahe Abdollahzadeh ◽  
S.H. Ebrahimnazhad Rahbari

AbstractWe have performed extensive one dimensional particle-in-cell (PIC) simulations to explore generation of electrostatic waves driven by two-stream instability (TSI) that arises due to the interaction between two symmetric counterstreaming electron beams. The electron beams are considered to be cold, collisionless and magnetic-field-free in the presence of neutralizing background of static ions. Here, electrons are described by the non-extensive q-distributions of the Tsallis statistics. Results shows that the electron holes structures are different for various q values such that: (i) for q > 1 cavitation of electron holes are more visible and the excited waves were more strong (ii) for q < 1 the degree of cavitation decreases and for q = 0.5 the holes are not distinguishable. Furthermore, time development of the velocity root-mean-square (VRMS) of electrons for different q-values demonstrate that the maximum energy conversion is increased upon increasing the non-extensivity parameter q up to the values q > 1. The normalized total energy history for a arbitrary entropic index q = 1.5, approves the energy conserving in our PIC simulation.


2021 ◽  
Author(s):  
Wensai Shang ◽  
Binbin Tang ◽  
Quanqi Shi ◽  
Et al

&lt;p&gt;The Earth's magnetopause is highly variable in location and shape and is modulated by solar wind conditions. On 8 March 2012, the ARTEMIS probes were located near the tail current sheet when an interplanetary shock arrived under northward interplanetary magnetic field conditions and recorded an abrupt tail compression at &amp;#8764;(-60, 0, -5) Re in Geocentric Solar Ecliptic coordinate in the deep magnetotail. ~ 10 minutes later, the probes crossed the magnetopause many times within an hour after the oblique interplanetary shock passed by. The solar wind velocity vector downstream from the shock was not directed along the Sun-Earth line but had a significant Y component. We propose that the compressed tail was pushed aside by the appreciable solar wind flow in the Y direction. Using a virtual spacecraft in a global magnetohydrodynamic (MHD) simulation, we reproduce the sequence of magnetopause crossings in the X-Y plane observed by ARTEMIS under oblique shock conditions, demonstrating that the compressed magnetopause is sharply deflected at lunar distances in response to the shock and solar wind Vy effects. The results from two global MHD simulations show that the shocked magnetotail at lunar distances is mainly controlled by the solar wind direction with a timescale of about a quarter hour, which appears to be consistent with the windsock effect. The results also provide some references for investigating interactions between the solar wind/magnetosheath and lunar nearside surface during full moon time intervals, which should not happen in general.&lt;/p&gt;


2020 ◽  
Author(s):  
Kazumasa Iwai ◽  
Daikou Shiota ◽  
Munetoshi Tokumaru ◽  
Ken'ichi Fujiki ◽  
Mitsue Den ◽  
...  

Abstract Coronal mass ejections (CMEs) cause various disturbances of the space environment; therefore, forecasting their arrival time is very important. However, forecasting accuracy is hindered by limited CME observations in interplanetary space. This study investigates the accuracy of CME arrival times at the Earth forecasted by three-dimensional (3D) magnetohydrodynamic (MHD) simulations based on interplanetary scintillation (IPS) observations. In this system, CMEs are approximated as spheromaks with various initial speeds. Ten MHD simulations with different CME initial speed are tested, and the density distributions derived from each simulation run are compared with IPS data observed by the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. The CME arrival time of the simulation run that most closely agrees with the IPS data is selected as the forecasted time. We then validate the accuracy of this forecast using 12 halo CME events. The average absolute arrival-time error of the IPS-based MHD forecast is approximately 5.0 h, which is one of the most accurate predictions that ever been validated, whereas that of MHD simulations without IPS data, in which the initial CME speed is derived from white-light coronagraph images, is approximately 6.7 h. This suggests that the assimilation of IPS data into MHD simulations can improve the accuracy of CME arrival-time forecasts. The average predicted arrival times are earlier than the actual arrival times. These early predictions may be due to overestimation of the magnetic field included in the spheromak and/or underestimation of the drag force from the background solar wind, the latter of which could be related to underestimation of CME size or background solar wind density.


2020 ◽  
Author(s):  
Kazumasa Iwai ◽  
Daikou Shiota ◽  
Munetoshi Tokumaru ◽  
Ken'ichi Fujiki ◽  
Mitsue Den ◽  
...  

Abstract Coronal mass ejections (CMEs) cause various disturbances of the space environment; therefore, forecasting their arrivaltime is very important.However,forecasting accuracy is hindered by limited CME observations in interplanetary space. This study investigates the accuracy of CME arrivaltimesat the Earth forecasted by three-dimensional(3D) magnetohydrodynamic (MHD) simulations based on interplanetary scintillation (IPS) observations. In this system, CMEs are approximated as spheromakswith various initial speeds. TenMHD simulations with different CME initial speed are tested, and the density distributions derived from each simulation run are compared with IPS data observed by the Institute for Space-Earth Environmental Research (ISEE), Nagoya University.The CME arrivaltime of the simulation run that most closelyagrees with the IPS data is selected as the forecasted time. We then validate the accuracy of this forecast using 12 halo CME events. The average absolute arrival-time error of theIPS-based MHD forecast is approximately 5.0 h, which is one of the most accurate predictions that ever been validated, whereasthat of MHD simulations without IPS data, in which the initial CME speed isderived from white-light coronagraph images, is approximately6.7 h. This suggests that the assimilation of IPS data into MHD simulations can improve the accuracy of CME arrival-time forecasts. The average predicted arrivaltimes are earlier than the actual arrival times. These early predictions may be duetooverestimation of the magnetic field included in the spheromak and/or underestimation of the drag force from the background solar wind, the latter of which could be related to underestimation of CME size or background solar wind density.


Sign in / Sign up

Export Citation Format

Share Document