scholarly journals D-region impact area of energetic electron precipitation during pulsating aurora

2021 ◽  
Vol 39 (1) ◽  
pp. 135-149
Author(s):  
Emma Bland ◽  
Fasil Tesema ◽  
Noora Partamies

Abstract. A total of 10 radars from the Super Dual Auroral Radar Network (SuperDARN) in Antarctica were used to estimate the spatial area over which energetic electron precipitation (EEP) impacts the D-region ionosphere during pulsating aurora (PsA) events. We use an all-sky camera (ASC) located at Syowa Station to confirm the presence of optical PsAs, and then we use the SuperDARN radars to detect high frequency (HF) radio attenuation caused by enhanced ionisation in the D-region ionosphere. The HF radio attenuation was identified visually by examining quick-look plots of the background HF radio noise and backscatter power from each radar. The EEP impact area was determined for 74 PsA events. Approximately one-third of these events have an EEP impact area that covers at least 12∘ of magnetic latitude, and three-quarters cover at least 4∘ of magnetic latitude. At the equatorward edge of the auroral oval, 44 % of events have a magnetic local time extent of at least 7 h, but this reduces to 17 % at the poleward edge. We use these results to estimate the average size of the EEP impact area during PsAs, which could be used as a model input for determining the impact of PsA-related EEP on the atmospheric chemistry.

2020 ◽  
Author(s):  
Emma Bland ◽  
Fasil Tesema ◽  
Noora Partamies

Abstract. Ten radars from the Super Dual Auroral Radar Network (SuperDARN) in Antarctica were used to estimate the spatial area over which energetic electron precipitation (EEP) impacts the D-region ionosphere during pulsating aurora (PsA) events. We use an all-sky camera located at Syowa Station to confirm the presence of optical PsA, and then use the SuperDARN radars to detect HF radio attenuation caused by enhanced ionisation in the D-region ionosphere. The HF radio attenuation was identified visually by examining quick-look plots of the background HF radio noise and backscatter power from each radar. The EEP impact area was determined for 74 PsA events. Approximately one third of these events have an EEP impact area that covers at least 12° of magnetic latitude, and three quarters cover at least 4° of magnetic latitude. At the equatorward edge of the auroral oval, 44 % of events have a magnetic local time extent of at least 7 hours, but this reduces to 17 % at the poleward edge. We use these results to estimate the average size of the EEP impact area during PsA, which could be used as a model input for determining the impact of PsA-related EEP on the atmospheric chemistry.


2016 ◽  
Vol 121 (6) ◽  
pp. 5914-5929 ◽  
Author(s):  
Annet Eva Zawedde ◽  
Hilde Nesse Tyssøy ◽  
Robert Hibbins ◽  
Patrick J. Espy ◽  
Linn-Kristine Glesnes Ødegaard ◽  
...  

2021 ◽  
Author(s):  
Christine Smith-Johnsen ◽  
Hilde Nesse Tyssøy ◽  
Daniel Robert Marsh ◽  
Anne Smith ◽  
Ville Maliniemi

<p><span>Energetic electron precipitation (EEP) ionizes the Earth's atmosphere and leads to production of nitric oxide (NO) throughout the polar Mesosphere and Lower Thermosphere (MLT). In this study we investigate the direct and indirect NO response to the EEP using the Whole Atmosphere Community Climate Model (WACCM) version 6. In comparison to observations from SOFIE / AIM (Solar Occultation For Ice Experiment / Aeronomy of Ice in the Mesosphere), we find that EEP production of NO in the D-region is well simulated when both medium energy electron precipitation and negative and cluster ion chemistry are included in the model. However, the main EEP production of NO occurs in the E-region, and there the observed and modeled production differ. This discrepancy impacts also the D-region due to downward transport of long lived NO. The transport across the mesopause is seasonally dependent, and WACCM’s underestimate of D-region NO is highest during winter when downwelling from above is strong. The drivers of this transport are further investigated by a sensitivity study of WACCM’s gravity wave forcing.</span></p>


2020 ◽  
Author(s):  
Christine Smith-Johnsen ◽  
Hilde Nesse Tyssøy ◽  
Daniel Marsh ◽  
Anne Smith

<p><a name="docs-internal-guid-803d1a38-7fff-fefe-52f7-d0a055a4547b"></a><a name="docs-internal-guid-b8d76d48-7fff-149a-6440-413c0de833ae"></a> <span>Energetic electron precipitation (EEP) ionizes the Earth's atmosphere and leads to production of nitric oxide (NO) from 50 to 150 km altitude. In this study we investigate the direct and indirect NO response to EEP using the Whole Atmosphere Community Climate Model (WACCM). In comparison to observations from SOFIE / AIM (Solar Occultation For Ice Experiment / Aeronomy of Ice in the Mesosphere), we find that EEP production of NO in the D-region is well simulated when both medium energy electron precipitation and negative and cluster ion chemistry is included in the model. However, the main EEP production of NO occurs in the E-region, and there the observed and modeled production differ. This discrepancy impacts also the D-region, and is seasonally dependent with the highest underestimate of D-region NO occuring during winter. The modeled transport across the mesopause during winter is generally weak, but strengthens with increased gravity wave activity. Increased eddy diffusion, increases NO at all altitudes through the polar MLT region</span></p>


2015 ◽  
Vol 42 (19) ◽  
pp. 8172-8176 ◽  
Author(s):  
A. Seppälä ◽  
M. A. Clilverd ◽  
M. J. Beharrell ◽  
C. J. Rodger ◽  
P. T. Verronen ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 816
Author(s):  
Rosa Lo Frano

The impact of an aircraft is widely known to be one of the worst events that can occur during the operation of a plant (classified for this reason as beyond design). This can become much more catastrophic and lead to the loss of strength of/collapse of the structures when it occurs in the presence of ageing (degradation and alteration) materials. Therefore, since the performance of all plant components may be affected by ageing, there is a need to evaluate the effect that aged components have on system performance and plant safety. This study addresses the numerical simulation of an aged Nuclear Power Plant (NPP) subjected to a military aircraft impact. The effects of impact velocity, direction, and location were investigated together with the more unfavorable conditions to be expected for the plant. The modelling method was also validated based on the results obtained from the experiments of Sugano et al., 1993. Non-linear analyses by means of finite element (FE) MARC code allowed us to simulate the performance of the reinforced concrete containment building and its impact on plant availability and reliability. The results showed that ageing increases a plant’s propensity to suffer damage. The damage at the impact area was confirmed to be dependent on the type of aircraft involved and the target wall thickness. The greater the degradation of the materials, the lower the residual resistance capacity, and the greater the risk of wall perforation.


2021 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
Darshana T. Dassanayake ◽  
Alessandro Antonini ◽  
Athanasios Pappas ◽  
Alison Raby ◽  
James Mark William Brownjohn ◽  
...  

The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.


2019 ◽  
Vol 12 (3) ◽  
pp. 1209-1225 ◽  
Author(s):  
Christoph A. Keller ◽  
Mat J. Evans

Abstract. Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models are numerically intense, and previous attempts to reduce the numerical cost of chemistry solvers have not delivered transformative change. We show here the potential of a machine learning (in this case random forest regression) replacement for the gas-phase chemistry in atmospheric chemistry transport models. Our training data consist of 1 month (July 2013) of output of chemical conditions together with the model physical state, produced from the GEOS-Chem chemistry model v10. From this data set we train random forest regression models to predict the concentration of each transported species after the integrator, based on the physical and chemical conditions before the integrator. The choice of prediction type has a strong impact on the skill of the regression model. We find best results from predicting the change in concentration for long-lived species and the absolute concentration for short-lived species. We also find improvements from a simple implementation of chemical families (NOx = NO + NO2). We then implement the trained random forest predictors back into GEOS-Chem to replace the numerical integrator. The machine-learning-driven GEOS-Chem model compares well to the standard simulation. For ozone (O3), errors from using the random forests (compared to the reference simulation) grow slowly and after 5 days the normalized mean bias (NMB), root mean square error (RMSE) and R2 are 4.2 %, 35 % and 0.9, respectively; after 30 days the errors increase to 13 %, 67 % and 0.75, respectively. The biases become largest in remote areas such as the tropical Pacific where errors in the chemistry can accumulate with little balancing influence from emissions or deposition. Over polluted regions the model error is less than 10 % and has significant fidelity in following the time series of the full model. Modelled NOx shows similar features, with the most significant errors occurring in remote locations far from recent emissions. For other species such as inorganic bromine species and short-lived nitrogen species, errors become large, with NMB, RMSE and R2 reaching >2100 % >400 % and <0.1, respectively. This proof-of-concept implementation takes 1.8 times more time than the direct integration of the differential equations, but optimization and software engineering should allow substantial increases in speed. We discuss potential improvements in the implementation, some of its advantages from both a software and hardware perspective, its limitations, and its applicability to operational air quality activities.


Sign in / Sign up

Export Citation Format

Share Document