scholarly journals Forecast score distributions with imperfect observations

Author(s):  
Julie Bessac ◽  
Philippe Naveau

Abstract. The field of statistics has become one of the mathematical foundations in forecast evaluation studies, especially with regard to computing scoring rules. The classical paradigm of scoring rules is to discriminate between two different forecasts by comparing them with observations. The probability distribution of the observed record is assumed to be perfect as a verification benchmark. In practice, however, observations are almost always tainted by errors and uncertainties. These may be due to homogenization problems, instrumental deficiencies, the need for indirect reconstructions from other sources (e.g., radar data), model errors in gridded products like reanalysis, or any other data-recording issues. If the yardstick used to compare forecasts is imprecise, one can wonder whether such types of errors may or may not have a strong influence on decisions based on classical scoring rules. We propose a new scoring rule scheme in the context of models that incorporate errors of the verification data. We rely on existing scoring rules and incorporate uncertainty and error of the verification data through a hidden variable and the conditional expectation of scores when they are viewed as a random variable. The proposed scoring framework is applied to standard setups, mainly an additive Gaussian noise model and a multiplicative Gamma noise model. These classical examples provide known and tractable conditional distributions and, consequently, allow us to interpret explicit expressions of our score. By considering scores to be random variables, one can access the entire range of their distribution. In particular, we illustrate that the commonly used mean score can be a misleading representative of the distribution when the latter is highly skewed or has heavy tails. In a simulation study, through the power of a statistical test, we demonstrate the ability of the newly proposed score to better discriminate between forecasts when verification data are subject to uncertainty compared with the scores used in practice. We apply the benefit of accounting for the uncertainty of the verification data in the scoring procedure on a dataset of surface wind speed from measurements and numerical model outputs. Finally, we open some discussions on the use of this proposed scoring framework for non-explicit conditional distributions.

2019 ◽  
Author(s):  
David Ian Duncan ◽  
Patrick Eriksson ◽  
Simon Pfreundschuh

Abstract. A two-dimensional variational retrieval (2DVAR) is presented for a passive microwave imager. The overlapping antenna patterns of all frequencies from the Advanced Microwave Scanning Radiometer-2 (AMSR2) are explicitly simulated to attempt retrieval of near surface wind speed and surface skin temperature at finer spatial scales than individual antenna beams. This is achieved, with the effective spatial resolution of retrieved parameters shown by analysis of 2DVAR averaging kernels. Sea surface temperature retrievals achieve about 30 km resolution, with wind speed retrievals at about 10 km resolution. It is argued that multi-dimensional optimal estimation permits greater use of total information content from microwave sensors than other methods, with no compromises on target resolution needed; instead, various targets are retrieved at the highest possible spatial resolution, driven by the channels' sensitivities. All AMSR2 channels can be simulated within near their published noise characteristics for observed clear-sky scenes, though calibration and emissivity model errors are key challenges. This experimental retrieval shows the feasibility of 2DVAR for cloud-free retrievals, and opens the possibility of standalone 3DVAR retrievals of water vapour and hydrometeor fields from microwave imagers in the future. The results have implications for future satellite missions and sensor design, as spatial oversampling can somewhat mitigate the need for larger antennas in the push for higher spatial resolution.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Haeju Lee ◽  
Sung Hoon Park

Wind-blown dust models use input data, including soil conditions and meteorology, to interpret the multi-step wind erosion process and predict the quantity of dust emission. Therefore, the accuracy of the wind-blown dust models is dependent on the accuracy of each input condition and the robustness of the model schemes for each elemental step of wind erosion. A thorough evaluation of a wind-blown model thus requires validation of the input conditions and the elemental model schemes. However, most model evaluations and intercomparisons have focused on the final output of the models, i.e., the vertical dust emission. Recently, a delicate set of measurement data for saltation flux and friction velocity was reported from the Japan-Australia Dust Experiment (JADE) Project, which enabled the step-by-step evaluation of wind-blown dust models up to the saltation step. When all the input parameters were provided from the observations, both the two widely used saltation schemes showed very good agreement with measurements, with the correlation coefficient and the agreement of index both being larger than 0.9, which demonstrated the strong robustness of the physical schemes for saltation. However, using the meteorology model to estimate the input conditions such as weather and soil conditions, considerably degraded the models’ performance. The critical reason for the model failure was determined to be the inaccuracy in the estimation of the threshold friction velocity (representing soil condition), followed by inaccurate estimation of surface wind speed. It was not possible to determine which of the two saltation schemes was superior, based on the present study results. Such differentiation will require further evaluation studies using more measurements of saltation flux and vertical dust emissions.


Author(s):  
G.P. Ivus ◽  
E.V. Ahayar ◽  
А.В. Semergei-Chumachenko ◽  
L.M. Hurska

Introduction. During the last decades in connection with rapid development of numerical methods of weather forecasting insufficient attention is given physical and statistical regularities. Nevertheless, climate change and its implications for the various sectors of the economy requires information about the probability characteristics of meteorological variables and phenomena, including wind anomaly. In the article it was considered experience of application Johnson′s distributions to equalize time series of surface wind speed in the meteorological station of Odessa-port in the central months of the seasons. Were found a number of regularities that take into account not only the seasonal and diurnal variation of parameters this distribution, but also the impact of physical and geographical conditions of the location meteorological station on the formation of surface wind regime. The purpose of publication is to substantiation application of Johnson′s law to approximate series of wind speed at the surface on the meteorological station Odessa-port. Methods and results. To describe the experimental data in various analytical models of the distribution law increasingly applied the family of Johnson's distributions. Its advantage compared to the distribution of the Pearson consists in the fact, that after some transformations, it leads to a normally distributed random variable. Approximation methods based on universal families of distributions provide flexibility solving the problem of alignment of distributions. The most common approaches to the construction of universal families are approaches based on the method of moments, and the replacement of the original sample the other, the distribution of which is the standard. Statistics wind is presented by following parameters: average values of wind speed, standard deviations, coefficients of asymmetry, excess, coefficient of variation and their error. Conducted alignment time series of surface wind speed using Johnson's distribution for station Odessa-port during a period 1981-1990 y.y., which managed to pick up when ε from -0.51 to -8.00. The parameter  λ, which determines the scale of change of the random variable seasonal ranges from 63.56 in January (18 UTC) to 15.77 in October (18 UTC). Estimating shape parameters of wind speed curves η and γ, can reveal some features of the surface wind regime at the st. Odessa port during the year. The less γ, the less slope of the curves. The values of η and γ varies within 0,82-3,54 and 0,24-4,81, respectively. In all cases, λ > 1, indicating that the family of curves belonging SL. The values of Q, which vary from 0.01 to 0.07, confirm the possibility of equalization the series of wind speed at the st. Odessa-port, Johnson's distribution family of SL. Conclusion. For unimodal distributions of time series wind speed at the meteorological station Odessa-port in almost all cases, possible to use the universal distribution of the Johnson's family SL. The parameters of this distribution allow to reveal regularities, that take into account impact of physical and geographical conditions of the location stations on the formation of surface wind regime.


2019 ◽  
Vol 34 (3) ◽  
pp. 587-601 ◽  
Author(s):  
Alexander Samalot ◽  
Marina Astitha ◽  
Jaemo Yang ◽  
George Galanis

Abstract The scope of this study is to assess a combination of well-known techniques for bias reduction and spatial interpolation in an attempt to improve wind speed prediction for storms on a gridded domain. This is accomplished by implementing Kalman filter (KF) for bias reduction and universal kriging (UK) for spatial interpolation as postprocessing steps for the Weather Research and Forecasting (WRF) Model. It is shown that for surface wind speed, a linear KF is adequate for eliminating systematic model errors with the available storm history. KF-estimated wind speed biases at station locations are then interpolated across the model domain using UK. The combined KF–UK approach improves the wind speed forecast median bias by 55% and RMSE by 15% (bulk statistics), while benefits obtained at station-specific locations can reach maximum improvements of 72% for RMSE and 100% for bias. Contingency statistics that inform on model performance over four categories of wind speed magnitude reveal that calm/moderate winds are successfully corrected but strong/gale winds cannot be adequately corrected by the combination of KF and UK, which is a disadvantage for improving prediction of severe storm conditions.


2019 ◽  
Vol 12 (12) ◽  
pp. 6341-6359
Author(s):  
David Ian Duncan ◽  
Patrick Eriksson ◽  
Simon Pfreundschuh

Abstract. A two-dimensional variational retrieval (2D-Var) is presented for a passive microwave imager. The overlapping antenna patterns of all frequencies from the Advanced Microwave Scanning Radiometer 2 (AMSR2) are explicitly simulated to attempt retrieval of near-surface wind speed and surface skin temperature at finer spatial scales than individual antenna beams. This is achieved, with the effective spatial resolution of retrieved parameters judged by analysis of 2D-Var averaging kernels. Sea surface temperature retrievals achieve about 30 km resolution, with wind speed retrievals at about 10 km resolution. It is argued that multi-dimensional optimal estimation permits greater use of total information content from microwave sensors than other methods, with no compromises on target resolution needed; instead, various targets are retrieved at the highest possible spatial resolution, driven by the channels' sensitivities. All AMSR2 channels can be simulated within near their published noise characteristics for observed clear-sky scenes, though calibration and emissivity model errors are key challenges. This experimental retrieval shows the feasibility of 2D-Var for cloud-free retrievals and opens the possibility of stand-alone 3D-Var retrievals of water vapour and hydrometeor fields from microwave imagers in the future. The results have implications for future satellite missions and sensor design, as spatial oversampling can somewhat mitigate the need for larger antennas in the push for higher spatial resolution.


2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


2020 ◽  
Vol 12 (2) ◽  
pp. 155-164
Author(s):  
He Fang ◽  
William Perrie ◽  
Gaofeng Fan ◽  
Tao Xie ◽  
Jingsong Yang

2019 ◽  
Vol 148 (1) ◽  
pp. 63-81 ◽  
Author(s):  
Kevin Bachmann ◽  
Christian Keil ◽  
George C. Craig ◽  
Martin Weissmann ◽  
Christian A. Welzbacher

Abstract We investigate the practical predictability limits of deep convection in a state-of-the-art, high-resolution, limited-area ensemble prediction system. A combination of sophisticated predictability measures, namely, believable and decorrelation scale, are applied to determine the predictable scales of short-term forecasts in a hierarchy of model configurations. First, we consider an idealized perfect model setup that includes both small-scale and synoptic-scale perturbations. We find increased predictability in the presence of orography and a strongly beneficial impact of radar data assimilation, which extends the forecast horizon by up to 6 h. Second, we examine realistic COSMO-KENDA simulations, including assimilation of radar and conventional data and a representation of model errors, for a convectively active two-week summer period over Germany. The results confirm increased predictability in orographic regions. We find that both latent heat nudging and ensemble Kalman filter assimilation of radar data lead to increased forecast skill, but the impact is smaller than in the idealized experiments. This highlights the need to assimilate spatially and temporally dense data, but also indicates room for further improvement. Finally, the examination of operational COSMO-DE-EPS ensemble forecasts for three summer periods confirms the beneficial impact of orography in a statistical sense and also reveals increased predictability in weather regimes controlled by synoptic forcing, as defined by the convective adjustment time scale.


Sign in / Sign up

Export Citation Format

Share Document