scholarly journals Effect of CO<sub>2</sub> enrichment on bacterial metabolism in an Arctic fjord

2013 ◽  
Vol 10 (5) ◽  
pp. 3285-3296 ◽  
Author(s):  
C. Motegi ◽  
T. Tanaka ◽  
J. Piontek ◽  
C. P. D. Brussaard ◽  
J.-P. Gattuso ◽  
...  

Abstract. The anthropogenic increase of carbon dioxide (CO2) alters the seawater carbonate chemistry, with a decline of pH and an increase in the partial pressure of CO2 (pCO2). Although bacteria play a major role in carbon cycling, little is known about the impact of rising pCO2 on bacterial carbon metabolism, especially for natural bacterial communities. In this study, we investigated the effect of rising pCO2 on bacterial production (BP), bacterial respiration (BR) and bacterial carbon metabolism during a mesocosm experiment performed in Kongsfjorden (Svalbard) in 2010. Nine mesocosms with pCO2 levels ranging from ca. 180 to 1400 μatm were deployed in the fjord and monitored for 30 days. Generally BP gradually decreased in all mesocosms in an initial phase, showed a large (3.6-fold average) but temporary increase on day 10, and increased slightly after inorganic nutrient addition. Over the wide range of pCO2 investigated, the patterns in BP and growth rate of bulk and free-living communities were generally similar over time. However, BP of the bulk community significantly decreased with increasing pCO2 after nutrient addition (day 14). In addition, increasing pCO2 enhanced the leucine to thymidine (Leu : TdR) ratio at the end of experiment, suggesting that pCO2 may alter the growth balance of bacteria. Stepwise multiple regression analysis suggests that multiple factors, including pCO2, explained the changes of BP, growth rate and Leu : TdR ratio at the end of the experiment. In contrast to BP, no clear trend and effect of changes of pCO2 was observed for BR, bacterial carbon demand and bacterial growth efficiency. Overall, the results suggest that changes in pCO2 potentially influence bacterial production, growth rate and growth balance rather than the conversion of dissolved organic matter into CO2.

2012 ◽  
Vol 9 (10) ◽  
pp. 15213-15235 ◽  
Author(s):  
C. Motegi ◽  
T. Tanaka ◽  
J. Piontek ◽  
C. P. D. Brussaard ◽  
J. P. Gattuso ◽  
...  

Abstract. The impact of rising carbon dioxide (pCO2) on bacterial production (BP), bacterial respiration (BR) and bacterial carbon metabolism was investigated during the mesocosm experiment in Kongsfjord (Svalbard) in 2010. The mesocosm experiment lasted 30 days and nine mesocosms with pCO2 levels ranging from ca. 180 to 1400 μatm were used. Generally, BP gradually decreased in all mesocosms in an initial phase, showed a large (3.6-fold in average) but temporary increase on day 10, and increased slightly afterwards. BP increased with increasing pCO2 at the beginning of the experiment (day 5). This trend became inversed and BP decreased with increasing pCO2 on day 14 (after nutrient addition). Interestingly, increasing pCO2 enhanced the leucine and thymidine ratio at the end of experiment, suggesting that pCO2 may alter the growth balance of bacteria. In contrast to BP, no clear trend and effect of changes of pCO2 was observed for BR, bacterial carbon demand and bacterial growth efficiency. Our results suggest that (1) the response to elevated pCO2 had a strong temporal variation, potentially linked to the nutrient status, and (2) pCO2 had an influence on biomass accumulation (i.e. BP) rather than on the conversion of dissolved organic matter into CO2 (i.e. BR).


2009 ◽  
Vol 75 (24) ◽  
pp. 7594-7601 ◽  
Author(s):  
Choon Weng Lee ◽  
Chui Wei Bong ◽  
Yii Siang Hii

ABSTRACT We investigated the temporal variation of bacterial production, respiration, and growth efficiency in the tropical coastal waters of Peninsular Malaysia. We selected five stations including two estuaries and three coastal water stations. The temperature was relatively stable (averaging around 29.5°C), whereas salinity was more variable in the estuaries. We also measured dissolved organic carbon and nitrogen (DOC and DON, respectively) concentrations. DOC generally ranged from 100 to 900 μM, whereas DON ranged from 0 to 32 μM. Bacterial respiration ranged from 0.5 to 3.2 μM O2 h−1, whereas bacterial production ranged from 0.05 to 0.51 μM C h−1. Bacterial growth efficiency was calculated as bacterial production/(bacterial production + respiration), and ranged from 0.02 to 0.40. Multiple correlation analyses revealed that bacterial production was dependent upon primary production (r2 = 0.169, df = 31, and P < 0.02) whereas bacterial respiration was dependent upon both substrate quality (i.e., DOC/DON ratio) (r2 = 0.137, df = 32, and P = 0.03) and temperature (r2 = 0.113, df = 36, and P = 0.04). Substrate quality was the most important factor (r2 = 0.119, df = 33, and P = 0.04) for the regulation of bacterial growth efficiency. Using bacterial growth efficiency values, the average bacterial carbon demand calculated was from 5.30 to 11.28 μM C h−1. When the bacterial carbon demand was compared with primary productivity, we found that net heterotrophy was established at only two stations. The ratio of bacterial carbon demand to net primary production correlated significantly with bacterial growth efficiency (r2 = 0.341, df = 35, and P < 0.001). From nonlinear regression analysis, we found that net heterotrophy was established when bacterial growth efficiency was <0.08. Our study showed the extent of net heterotrophy in these waters and illustrated the importance of heterotrophic microbial processes in coastal aquatic food webs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caiqin Hu ◽  
Xiangfu Li ◽  
Maoqiu He ◽  
Peng Jiang ◽  
Aimin Long ◽  
...  

Increasing anthropogenic CO2 emissions in recent decades cause ocean acidification (OA), affecting carbon cycling in oceans by regulating eco-physiological processes of plankton. Heterotrophic bacteria play an important role in carbon cycling in oceans. However, the effect of OA on bacteria in oceans, especially in oligotrophic regions, was not well understood. In our study, the response of bacterial metabolic activity and community composition to OA was assessed by determining bacterial production, respiration, and community composition at the low-pCO2 (400 ppm) and high-pCO2 (800 ppm) treatments over the short term at two oligotrophic stations in the northern South China Sea. Bacterial production decreased significantly by 17.1–37.1 % in response to OA, since bacteria with high nucleic acid content preferentially were repressed by OA, which was less abundant under high-pCO2 treatment. Correspondingly, shifts in bacterial community composition occurred in response to OA, with a high fraction of the small-sized bacteria and high bacterial species diversity in a high-pCO2 scenario at K11. Bacterial respiration responded to OA differently at both stations, most likely attributed to different physiological responses of the bacterial community to OA. OA mitigated bacterial growth efficiency, and consequently, a larger fraction of DOC entering microbial loops was transferred to CO2.


2015 ◽  
Vol 12 (11) ◽  
pp. 8199-8234
Author(s):  
V. Kasurinen ◽  
H. Aarnos ◽  
A. Vähätalo

Abstract. In order to assess the production of biologically labile photoproducts (BLPs) from non-labile riverine dissolved organic carbon (DOC), we collected water samples from ten major rivers, removed labile DOC and mixed the residual non-labile DOC with artificial seawater for microbial and photochemical experiments. Bacteria grew on non-labile DOC with a growth efficiency of 11.5% (mean; range from 3.6 to 15.3%). Simulated solar radiation transformed a part of non-labile DOC into BLPs, which stimulated bacterial respiration and production, but did not change bacterial growth efficiency (BGE) compared to the non-irradiated dark controls. In the irradiated water samples, the amount of BLPs stimulating bacterial production depended on the photochemical bleaching of chromophoric dissolved organic matter (CDOM). The apparent quantum yields for BLPs supporting bacterial production ranged from 9.5 to 76 (mean 39) (μmol C mol photons−1) at 330 nm. The corresponding values for BLPs supporting bacterial respiration ranged from 57 to 1204 (mean 320) (μmol C mol photons−1). According to the calculations based on spectral apparent quantum yields and local solar radiation, the annual production of BLPs ranged from 21 (St. Lawrence) to 584 (Yangtze) mmol C m−2 yr−1 in the plumes of the examined rivers. Complete photobleaching of riverine CDOM in the coastal ocean was estimated to produce 10.7 Mt C BLPs yr−1 from the rivers examined in this study and globally 38 Mt yr−1 (15% of riverine DOC flux from all rivers), which support 4.1 Mt yr−1 of bacterial production and 33.9 Mt yr−1 bacterial respiration.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Natalia González-Benítez ◽  
Lara S. García-Corral ◽  
Xosé Anxelu G. Morán ◽  
Jack J. Middelburg ◽  
Marie Dominique Pizay ◽  
...  

AbstractThe carbon fluxes between phytoplankton and heterotrophic bacterioplankton were studied in two coastal oligotrophic sites in the NW Mediterranean. Phytoplankton and bacterial production rates were measured under natural conditions using different methods. In the Bay of Villefranche, the temporal variability revealed net heterotrophy in July-October and net autotrophy in December-March. The spatial variability was studied in the Bay of Palma, showing net autotrophic areas in the west and heterotrophic areas in the east. On average bacterial respiration, represented 62% of the total community respiration. Bacterial growth efficiency (BGE) values were significantly higher in autotrophic conditions than in heterotrophic ones. During autotrophic periods, dissolved primary production (DPP) was enough to sustained bacterial metabolism, although it showed a positive correlation with organic carbon stock (DOC). Under heterotrophic conditions, DPP did not sustain bacterial metabolism but bacterial respiration correlated with DPP and bacterial production with DOC. Temperature affected positively, DOC, BGE, bacterial respiration and production when the trophic status was autotrophic. To summarize, the response of bacterial metabolism to temperature and carbon sources depends on the trophic status within these oligotrophic coastal systems.


2010 ◽  
Vol 80 (45) ◽  
pp. 319-329 ◽  
Author(s):  
Allyson A. West ◽  
Marie A. Caudill

Folate and choline are water-soluble micronutrients that serve as methyl donors in the conversion of homocysteine to methionine. Inadequacy of these nutrients can disturb one-carbon metabolism as evidenced by alterations in circulating folate and/or plasma homocysteine. Among common genetic variants that reside in genes regulating folate absorptive and metabolic processes, homozygosity for the MTHFR 677C > T variant has consistently been shown to have robust effects on status markers. This paper will review the impact of genetic variants in folate-metabolizing genes on folate and choline bioefficacy. Nutrient-gene and gene-gene interactions will be considered along with the need to account for these genetic variants when updating dietary folate and choline recommendations.


2019 ◽  
pp. 79-91 ◽  
Author(s):  
V. S. Nazarov ◽  
S. S. Lazaryan ◽  
I. V. Nikonov ◽  
A. I. Votinov

The article assesses the impact of various factors on the growth rate of international trade. Many experts interpreted the cross-border flows of goods decline against the backdrop of a growing global economy as an alarming sign that indicates a slowdown in the processes of globalization. To determine the reasons for the dynamics of international trade, the decompositions of its growth rate were carried out and allowed to single out the effect of the dollar exchange rate, the commodities prices and global value chains on the change in the volume of trade. As a result, it was discovered that the most part of the dynamics of international trade is due to fluctuations in the exchange rate of the dollar and prices for basic commodity groups. The negative contribution of trade within global value chains in 2014 was also revealed. During the investigated period (2000—2014), such a picture was observed only in the crisis periods, which may indicate the beginning of structural changes in the world trade.


2015 ◽  
Vol 2 (1) ◽  
pp. 30-34
Author(s):  
K. Korobkova ◽  
V. Patyka

Contemporary state of the distribution of mycoplasma diseases of cultivated crops in Ukraine was analyzed. The changes of the physiological state of plant cells under the impact of mollicutes were investigated. It was demonstrated that there is temporary increase in the activity of peroxidase, catalase, polyphenoloxidase, phenylalanine-ammonia-lyase at the early stages of interaction. The adhesive properties are changed in the mollicutes under the impact of plant lectin; there is synthesis of new polypeptides. It was determined that the phytopathogenic acholeplasma is capable of producing a complex of proteolytic enzymes into the culture me- dium. It was concluded that when plant cells are infected with acholeplasma, a number of signaling interactions and metabolic transformations condition the recognition of pathogenesis and ensure the aggregate response of a plant to stress in the form of defense reactions. It was assumed that some specifi cities of the biology of phy- topathogenic acholeplasma determine their avoiding the immune mechanisms of plants and promote long-term persistence of mollicutes.


Sign in / Sign up

Export Citation Format

Share Document