scholarly journals Biomass burning fuel consumption rates: a field measurement database

2014 ◽  
Vol 11 (24) ◽  
pp. 7305-7329 ◽  
Author(s):  
T. T. van Leeuwen ◽  
G. R. van der Werf ◽  
A. A. Hoffmann ◽  
R. G. Detmers ◽  
G. Rücker ◽  
...  

Abstract. Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha−1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 ± 77), temperate forest (n = 12, FC = 58 ± 72), boreal forest (n = 16, FC = 35 ± 24), pasture (n = 4, FC = 28 ± 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0–43), crop residue (n = 4, FC = 6.5 ± 9.0), chaparral (n = 3, FC = 27 ± 19), tropical peatland (n = 4, FC = 314 ± 196), boreal peatland (n = 2, FC = 42 [42–43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole biomes. Comparing the compiled FC values with co-located Global Fire Emissions Database version 3 (GFED3) FC indicates that modeling studies that aim to represent variability in FC also within biomes, still require improvements as they have difficulty in representing the dynamics governing FC.

2014 ◽  
Vol 11 (6) ◽  
pp. 8115-8180 ◽  
Author(s):  
T. T. van Leeuwen ◽  
G. R. van der Werf ◽  
A. A. Hoffmann ◽  
R. G. Detmers ◽  
G. Rücker ◽  
...  

Abstract. Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. These fuel consumption (FC) rates depend on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC rates are either modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC rates for various biomes and fuel categories to better understand FC rates and variability, and to provide a~database that can be used to constrain biogeochemical models with fire modules. We compiled in total 76 studies covering 10 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha−1), tropical forest (n = 19, FC = 126), temperate forest (n = 11, FC = 93), boreal forest (n = 16, FC = 39), pasture (n = 6, FC = 28), crop residue (n = 4, FC = 6.5), chaparral (n = 2, FC = 32), tropical peatland (n = 4, FC = 314), boreal peatland (n = 2, FC = 42), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only 3 measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences were found within the defined biomes: for example FC rates of temperate pine forests in the USA were 38% higher than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC rates, not only between biomes but also within biomes and fuel classes. This implies that care should be taken with using averaged values, and our comparison with FC rates from GFED3 indicates that also modeling studies have difficulty in representing the dynamics governing FC.


2013 ◽  
Vol 43 (5) ◽  
pp. 493-506 ◽  
Author(s):  
Elena A. Kukavskaya ◽  
Amber J. Soja ◽  
Alexander P. Petkov ◽  
Evgeni I. Ponomarev ◽  
Galina A. Ivanova ◽  
...  

Boreal forests constitute the world's largest terrestrial carbon pools. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and atmosphere, directly and indirectly. Wildfire emissions in Russia contribute substantially to the global carbon cycle and have potentially important feedbacks to changing climate. Published estimates of carbon emissions from fires in Russian boreal forests vary greatly depending on the methods and data sets used. We examined various fire and vegetation products used to estimate wildfire emissions for Siberia. Large (up to fivefold) differences in annual and monthly area burned estimates for Siberia were found among four satellite-based fire data sets. Official Russian data were typically less than 10% of satellite estimates. Differences in the estimated proportion of annual burned area within each ecosystem were as much as 40% among five land-cover products. As a result, fuel consumption estimates would be expected to vary widely (3%–98%) depending on the specific vegetation mapping product used and as a function of weather conditions. Verification and validation of burned area and land-cover data sets along with the development of fuel maps and combustion models are essential for accurate Siberian wildfire emission estimates, which are central to balancing the carbon budget and assessing feedbacks to climate change.


2017 ◽  
Author(s):  
Guido R. van der Werf ◽  
James T. Randerson ◽  
Louis Giglio ◽  
Thijs T. van Leeuwen ◽  
Yang Chen ◽  
...  

Abstract. Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long term fire records are needed that fuse information from different satellite and in-situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997–2015. The modeling system, based on the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include: 1) new burned area estimates with contributions from small fires, 2) a revised fuel consumption parameterization optimized using field observations, 3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and 4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2 x 1015 grams carbon per year (Pg C yr-1) during 1997–2015, with a maximum in 1997 (3.0 Pg C yr-1) and minimum in 2013 (1.8 Pg C yr-1). These estimates were 11 % higher than our previous estimates (GFED3) during 1997–2011, when the two datasets overlapped. This increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (–19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the "s" for small fires), average emissions were 1.5 Pg C yr-1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. Our improved dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth System. GFED data is available from http://www.globalfiredata.org.


2017 ◽  
Vol 9 (2) ◽  
pp. 697-720 ◽  
Author(s):  
Guido R. van der Werf ◽  
James T. Randerson ◽  
Louis Giglio ◽  
Thijs T. van Leeuwen ◽  
Yang Chen ◽  
...  

Abstract. Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997–2016. The modeling system, based on the Carnegie–Ames–Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2  ×  1015 grams of carbon per year (Pg C yr−1) during 1997–2016, with a maximum in 1997 (3.0 Pg C yr−1) and minimum in 2013 (1.8 Pg C yr−1). These estimates were 11 % higher than our previous estimates (GFED3) during 1997–2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (−19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the s for small fires), average emissions were 1.5 Pg C yr−1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from http://www.globalfiredata.org.


2020 ◽  
Author(s):  
Wei Min Hao ◽  
Matthew C. Reeves ◽  
L. Scott Baggett ◽  
Yves Balkanski ◽  
Philippe Ciais ◽  
...  

Abstract. Northern Eurasia is highly sensitive to climate change. Fires in this region can have significant impacts on regional air quality, radiative forcing and black carbon deposition in the Arctic to accelerate ice melting. Using a MODIS-derived burned area data set, we report that the total annual area burned in this region declined by 53 % during the 15-year period of 2002–2016. Grassland fires dominated the trend, accounting for 93 % of the decline of the total area burned. Grassland fires in Kazakhstan contributed 47 % of the total area burned and 84 % of the decline. Wetter climate and increased grazing are the principle driving forces for the decline. Our findings: 1) highlight the importance of the complex interactions of climate-vegetation-land use in affecting fire activity, and 2) reveal how the resulting impacts on fire activity in a relatively small region such as Kazakhstan can dominate the trends of burned areas across a much larger landscape of northern Eurasia. Our findings may be used to improve the prediction of future fire dynamics and associated fire emissions in northern Eurasia.


2020 ◽  
Author(s):  
Valentina Bacciu ◽  
Carla Scarpa ◽  
Costantino Sirca ◽  
Spano Donatella

<p>Vegetation fires contribute to 38% to the emission of CO<sub>2</sub> into the atmosphere, against 62% caused by the combustion of fossil fuels. Further, it could approach levels of anthropogenic carbon emissions, especially in years of extreme fire activity (e.g. 2003, 2017). According to the equation first proposed by Seiler and Crutzen (1980), fire emission estimation use information on the amount of burned biomass, the emission factors associated with each specific chemical species, the burned area, and the combustion efficiency. Still, simulating emission from forest fires is affected by several errors and uncertainties, due to the different assessment approach to characterize the various parameters involved in the equation. For example, regional assessment relied on fire-activity reports from forest services, with assumptions regarding the type of vegetation burned, the characteristics of burning, and the burned area. Improvements and new advances in remote sensing, experimental measurements of emission factors, fuel consumption models, fuel load evaluation, and spatial and temporal distribution of burning are a valuable help for predicting and quantifying accurately the source and the composition of fire emissions.</p><p>With the aim to contribute to a better estimation of biomass burning emission, in this work we compared fire emission estimations using two different types of burned area products and combustion efficiency approaches in the framework of the recently developed system for modeling fire emission in Italy (Bacciu et al., 2012). This methodology combines a fire emission model (FOFEM - First Order Fire Effect Model, Reinhardt et al., 1997) with spatial and non-spatial inputs related to fire, vegetation, and weather conditions. The perimeters and burned area of selected large fires that occurred in 2017 in Italy were obtained by the former Corpo Forestale dello Stato (actually Carabinieri C.U.F.A.A.) and by the Copernicus Emergency Management Service (EMS). The vegetation types were derived from CORINE LAND COVER (2012). For each vegetation type, fuel loading was assigned using a combination of field observations and literature data (e.g., Mitsopoulos and Dimitrakopoulos 2007; Ascoli et al., 2019). Fuel moisture conditions, influencing the combustion efficiency, were derived from the daily Canadian Fine Fuels Moisture Code (FFMC), calculated from MARS interpolated weather data (25km x 25km). The daily FFMC was then associated with the two types of fire data with the aim of group fires in function of their relative ease of ignition and flammability of fine fuel (burning conditions, from low to extreme). For the EMS fire, it was also possible to further define fire severity and thus the percentage of combusted crown through the assessed fire damage grade.</p><p>The results showed differences in the total emissions according to the fire product and the approach to estimate the combustion efficiency. Furthermore, it seems that the difference in the evaluation of severity - and therefore in the degree of combustion of the canopy- affects more than the differences in terms of area burned. Overall, the results pointed out the crucial role of appropriate fuel, fire, and weather data and maps to attain reasonable simulations of fuel consumption and smoke emissions.</p>


2010 ◽  
Vol 7 (3) ◽  
pp. 1171-1186 ◽  
Author(s):  
L. Giglio ◽  
J. T. Randerson ◽  
G. R. van der Werf ◽  
P. S. Kasibhatla ◽  
G. J. Collatz ◽  
...  

Abstract. Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5° spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001–2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees developed over periods when burned area and Terra MODIS active fire data were available to indirectly estimate burned area. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) allowed the data set to be extended prior to the MODIS era. With our data set we estimated that the global annual area burned for the years 1997–2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 13 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3) estimates of trace gas and aerosol emissions.


2007 ◽  
Vol 16 (5) ◽  
pp. 593 ◽  
Author(s):  
William J. de Groot ◽  
Robert Landry ◽  
Werner A. Kurz ◽  
Kerry R. Anderson ◽  
Peter Englefield ◽  
...  

In support of Canada’s National Forest Carbon Monitoring, Accounting and Reporting System, a project was initiated to develop and test procedures for estimating direct carbon emissions from fires. The Canadian Wildland Fire Information System (CWFIS) provides the infrastructure for these procedures. Area burned and daily fire spread estimates are derived from satellite products. Spatially and temporally explicit indices of burning conditions for each fire are calculated by CWFIS using fire weather data. The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) provides detailed forest type and leading species information, as well as pre-fire fuel load data. The Boreal Fire Effects Model calculates fuel consumption for different live biomass and dead organic matter pools in each burned cell according to fuel type, fuel load, burning conditions, and resulting fire behaviour. Carbon emissions are calculated from fuel consumption. CWFIS summarises the data in the form of disturbance matrices and provides spatially explicit estimates of area burned for national reporting. CBM-CFS3 integrates, at the national scale, these fire data with data on forest management and other disturbances. The methodology for estimating fire emissions was tested using a large-fire pilot study. A framework to implement the procedures at the national scale is described.


2009 ◽  
Vol 6 (6) ◽  
pp. 11577-11622 ◽  
Author(s):  
L. Giglio ◽  
J. T. Randerson ◽  
G. R. van der Werf ◽  
P. S. Kasibhatla ◽  
G. J. Collatz ◽  
...  

Abstract. Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5° spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001–2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees to develop relationships between burned area and Terra MODIS active fire data. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) allowed the data set to be extended prior to the MODIS era. With our data set we estimated the global annual area burned for the years 1997–2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 12 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3) estimates of trace gas and aerosol emissions.


2014 ◽  
Vol 11 (12) ◽  
pp. 17579-17629
Author(s):  
S. Veraverbeke ◽  
B. M. Rogers ◽  
J. T. Randerson

Abstract. Boreal fires burn carbon-rich organic soils, thereby releasing large quantities of trace gases and aerosols that influence atmospheric composition and climate. To better understand the factors regulating boreal fire emissions, we developed a statistical model of carbon consumption by fire for Alaska with a spatial resolution of 500 m and a temporal resolution of one day. We used the model to estimate variability in carbon emissions between 2001 and 2012. Daily burned area was mapped using imagery from the Moderate Resolution Imaging Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon consumption was calibrated using available field measurements from black spruce forests in Alaska. We built two nonlinear multiplicative models to separately predict above- and belowground carbon consumption by fire in response to environmental variables including elevation, day of burning within the fire season, pre-fire tree cover and the differenced normalized burn ratio (dNBR). Higher belowground consumption occurred later in the season and for mid-elevation regions. Aboveground and belowground consumption also increased as a function of tree cover and the dNBR, suggesting a causal link between the processes regulating these two components of consumption. Between 2001 and 2012, the median fuel consumption was 2.48 kg C m-2 and the median pixel-based uncertainty (SD of prediction error) was 0.38 kg C m-2. There were considerable amounts of burning in other cover types than black spruce and consumption in pure black spruce stands was generally higher. Fuel consumption originated primarily from the belowground fraction (median = 2.30 kg C m-2 for all cover types and 2.63 kg C m-2 for pure black spruce stands). Total carbon emissions varied considerably from year to year, with the highest emissions occurring during 2004 (67 Tg C), 2005 (44 Tg C), 2009 (25 Tg C), and 2002 (16 Tg C) and a mean of 14 Tg C per year between 2001 and 2012. Our analysis highlights the importance of accounting for the spatial heterogeneity within fuels and consumption when extrapolating emissions in space and time. This data on daily burned area and emissions may be useful for in understanding controls and limits on fire growth, and predicting potential feedbacks of changing fire regimes.


Sign in / Sign up

Export Citation Format

Share Document