scholarly journals Multi-isotope labelling of organic matter by diffusion of <sup>2</sup>H/<sup>18</sup>O-H<sub>2</sub>O vapour and <sup>13</sup>C-CO<sub>2</sub> into the leaves and its distribution within the plant

2015 ◽  
Vol 12 (6) ◽  
pp. 1865-1879 ◽  
Author(s):  
M. S. Studer ◽  
R. T. W. Siegwolf ◽  
M. Leuenberger ◽  
S. Abiven

Abstract. Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides × nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After 1 week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled (δ18O = −63 ± 8, δ2H = −156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable back-diffusion of vapour into the leaves (58–69%) in the opposite direction to the net transpiration flow. The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2–4 times higher in leaves than in the stems and roots. This could be an indication of the synthesis of more condensed compounds in roots and stems (e.g. lignin vs. cellulose) or might be the result of O and H exchange and fractionation processes during phloem transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest in the fields of plant physiology, palaeoclimatic reconstruction or soil science.

2014 ◽  
Vol 11 (11) ◽  
pp. 15911-15943
Author(s):  
M. S. Studer ◽  
R. T. W. Siegwolf ◽  
M. Leuenberger ◽  
S. Abiven

Abstract. Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides x nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After one week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled (δ18O = −63± 8‰, δ2H = −156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable diffusion of vapour into the leaves (58–69%). The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2–4 times higher in leaves than in the stems and roots. This either indicates the synthesis of more condensed compounds (lignin vs. cellulose) in roots and stems, or be the result of O and H exchange and fractionation processes during transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest for the fields of plant physiology, paleoclimatic reconstruction or soil science.


2012 ◽  
Vol 38 (1) ◽  
pp. 40-42 ◽  
Author(s):  
O. A. Gutorova ◽  
A. Kh. Sheudzhen ◽  
A. G. Ladatko

1983 ◽  
Vol 100 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Elisabeth Grenet

SUMMARYThe digestibility, the voluntary intake and the nitrogen balance of 108 diets corresponding to 94 silages prepared from 20 fresh crops were measured in growing sheep. Series of silages were made from the same fresh forage. Each series included two controls: a direct-cut silage without additive and a direct-cut silage with formic acid, with a variable number of experimental silages with different additives.Rumen ammonia concentration, measured on rumen-fistulated sheep, decreased when an additive was used. It increased with nitrogen intake and was inversely related to the organic-matter digestibility and the crude-fibre digestibility. It varied with the silage composition.The crude-protein digestibility of direct-cut silages without additives was similar to or slightly higher than the crude-protein digestibility of the fresh crops. The addition of formic acid depressed the digestibility, but the addition of formaldehyde decreased it even more. The urinary nitrogen loss was higher for silages without additive than for the fresh crops and was decreased by the addition of formic acid. The addition of formaldehyde to formic acid had an additive effect.Retained nitrogen was lower in silages without additives (12% of nitrogen intake) than in parent crops (15·7%). It increased when formic acid (15·8%) was added. The addition of formaldehyde at a low rate (1·5 l/t green fodder) to the formic acid did not increase the nitrogen retention whether expressed in g/day or as percentage of nitrogen intake, but the addition of formaldehyde at a high rate (3·5 l/t green fodder) to formic acid decreased nitrogen retention. The other additives based on cereals or whey did not improve the nitrogen balance compared with formic acid. Nitrogen retention differed according to plant species.Retained nitrogen increased with digestible organic-matter intake and nitrogen intake. It increased with the silage water-soluble carbohydrate content. The higher the silage fermentation product content (ammonia, lactic acid, propionic acid), the lower the retained nitrogen. It appears that the nitrogen value of silages can be high provided that the silages are well preserved and that excessive protein breakdown is avoided.


2021 ◽  
Author(s):  
A. L. Romero-Olivares ◽  
E. W. Morrison ◽  
A. Pringle ◽  
S. D. Frey

AbstractFungi are mediators of the nitrogen and carbon cycles in terrestrial ecosystems. Examining how nitrogen uptake and organic matter decomposition potential differs in fungi can provide insight into the underlying mechanisms driving fungal ecological processes and ecosystem functioning. In this study, we assessed the frequency of genes encoding for specific enzymes that facilitate nitrogen uptake and organic matter decomposition in 879 fungal genomes with fungal taxa grouped into trait-based categories. Our linked gene-trait data approach revealed that gene frequencies vary across and within trait-based groups and that trait-based categories differ in trait space. We present two examples of how this linked gene-trait approach can be used to address ecological questions. First, we show that this type of approach can help us better understand, and potentially predict, how fungi will respond to environmental stress. Specifically, we found that trait-based categories with high nitrogen uptake gene frequency increased in relative abundance when exposed to high soil nitrogen enrichment. Second, by comparing frequencies of nitrogen uptake and organic matter decomposition genes, we found that most ectomycorrhizal fungi in our dataset have similar gene frequencies to brown rot fungi. This demonstrates that gene-trait data approaches can shed light on potential evolutionary trajectories of life history traits in fungi. We present a framework for exploring nitrogen uptake and organic matter decomposition gene frequencies in fungal trait-based groups and provide two concise examples on how to use our framework to address ecological questions from a mechanistic perspective.


2013 ◽  
Vol 13 (2) ◽  
pp. 1023-1037 ◽  
Author(s):  
C. Mouchel-Vallon ◽  
P. Bräuer ◽  
M. Camredon ◽  
R. Valorso ◽  
S. Madronich ◽  
...  

Abstract. The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.


Sign in / Sign up

Export Citation Format

Share Document