scholarly journals Technical Note: Cost-efficient approaches to measure carbon dioxide (CO<sub>2</sub>) fluxes and concentrations in terrestrial and aquatic environments using mini loggers

2015 ◽  
Vol 12 (12) ◽  
pp. 3849-3859 ◽  
Author(s):  
D. Bastviken ◽  
I. Sundgren ◽  
S. Natchimuthu ◽  
H. Reyier ◽  
M. Gålfalk

Abstract. Fluxes of CO2 are important for our understanding of the global carbon cycle and greenhouse gas balances. Several significant CO2 fluxes in nature may still be unknown as illustrated by recent findings of high CO2 emissions from aquatic environments, previously not recognized in global carbon balances. Therefore, it is important to develop convenient and affordable ways to measure CO2 in many types of environments. At present, direct measurements of CO2 fluxes from soil or water, or CO2 concentrations in surface water, are typically labor intensive or require costly equipment. We here present an approach with measurement units based on small inexpensive CO2 loggers, originally made for indoor air quality monitoring, that were tested and adapted for field use. Measurements of soil–atmosphere and lake–atmosphere fluxes, as well as of spatiotemporal dynamics of water CO2 concentrations (expressed as the equivalent partial pressure, pCO2aq) in lakes and a stream network are provided as examples. Results from all these examples indicate that this approach can provide a cost- and labor-efficient alternative for direct measurements and monitoring of CO2 flux and pCO2aq in terrestrial and aquatic environments.

2015 ◽  
Vol 12 (3) ◽  
pp. 2357-2380 ◽  
Author(s):  
D. Bastviken ◽  
I. Sundgren ◽  
S. Natchimuthu ◽  
H. Reyier ◽  
M. Gålfalk

Abstract. Fluxes of CO2 are important for our understanding of the global carbon cycle and greenhouse gas balances. Several significant CO2 fluxes in nature may still be neglected as illustrated by recent findings of high CO2 emissions from aquatic environments, previously not recognized in global carbon balances. Therefore it is important to develop convenient and affordable ways to measure CO2 in many types of environments. At present, direct measurements of CO2 fluxes from soils or waters, or CO2 concentrations in surface water, are typically labour intensive or require costly equipment. We here present an approach with measurement units based on small inexpensive CO2 loggers, originally made for indoor air quality monitoring, that were tested and adapted for field use. Measurements of soil–atmosphere and lake–atmosphere fluxes, as well as of spatio-temporal dynamics of water CO2 concentrations (expressed as the equivalent partial pressure, pCO2aq) in lakes and a stream network are provided as examples. Results from all these examples indicate that this approach can provide a cost- and labor efficient alternative for direct measurements and monitoring of CO2 flux and pCO2aq in terrestrial and aquatic environments.


2020 ◽  
Vol 20 (9) ◽  
pp. 5293-5308
Author(s):  
Shigeyuki Ishidoya ◽  
Hirofumi Sugawara ◽  
Yukio Terao ◽  
Naoki Kaneyasu ◽  
Nobuyuki Aoki ◽  
...  

Abstract. In order to examine O2 consumption and CO2 emission in a megacity, continuous observations of atmospheric O2 and CO2 concentrations, along with CO2 flux, have been carried out simultaneously since March 2016 at the Yoyogi (YYG) site located in the middle of Tokyo, Japan. An average O2 : CO2 exchange ratio for net turbulent O2 and CO2 fluxes (ORF) between the urban area and the overlaying atmosphere was obtained based on an aerodynamic method using the observed O2 and CO2 concentrations. The yearly mean ORF was found to be 1.62, falling within the range of the average OR values of liquid and gas fuels, and the annual average daily mean O2 flux at YYG was estimated to be −16.3 µmol m−2 s−1 based on the ORF and CO2 flux. By using the observed ORF and CO2 flux, along with the inventory-based CO2 emission from human respiration, we estimated the average diurnal cycles of CO2 fluxes from gas and liquid fuel consumption separately for each season. Both the estimated and inventory-based CO2 fluxes from gas fuel consumption showed average diurnal cycles with two peaks, one in the morning and another one in the evening; however, the evening peak of the inventory-based gas consumption was much larger than that estimated from the CO2 flux. This can explain the discrepancy between the observed and inventory-based total CO2 fluxes at YYG. Therefore, simultaneous observations of ORF and CO2 flux are useful in validating CO2 emission inventories from statistical data.


2012 ◽  
Vol 6 (6) ◽  
pp. 5037-5068 ◽  
Author(s):  
S. Rysgaard ◽  
D. H. Søgaard ◽  
M. Cooper ◽  
M. Pućko ◽  
K. Lennert ◽  
...  

Abstract. The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700–900 µmol kg−1 ice (~ 25 × 106 crystals kg−1) to bottom-layer values of 100–200 µmol kg−1 ice (1–7 × 106 kg−1), all of which are much higher (4–10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.


2015 ◽  
Vol 15 (2) ◽  
pp. 1087-1104 ◽  
Author(s):  
Z. Peng ◽  
M. Zhang ◽  
X. Kou ◽  
X. Tian ◽  
X. Ma

Abstract. In order to optimize surface CO2 fluxes at grid scales, a regional surface CO2 flux inversion system (Carbon Flux Inversion system and Community Multi-scale Air Quality, CFI-CMAQ) has been developed by applying the ensemble Kalman filter (EnKF) to constrain the CO2 concentrations and applying the ensemble Kalman smoother (EnKS) to optimize the surface CO2 fluxes. The smoothing operator is associated with the atmospheric transport model to constitute a persistence dynamical model to forecast the surface CO2 flux scaling factors. In this implementation, the "signal-to-noise" problem can be avoided; plus, any useful observed information achieved by the current assimilation cycle can be transferred into the next assimilation cycle. Thus, the surface CO2 fluxes can be optimized as a whole at the grid scale in CFI-CMAQ. The performance of CFI-CMAQ was quantitatively evaluated through a set of Observing System Simulation Experiments (OSSEs) by assimilating CO2 retrievals from GOSAT (Greenhouse Gases Observing Satellite). The results showed that the CO2 concentration assimilation using EnKF could constrain the CO2 concentration effectively, illustrating that the simultaneous assimilation of CO2 concentrations can provide convincing CO2 initial analysis fields for CO2 flux inversion. In addition, the CO2 flux optimization using EnKS demonstrated that CFI-CMAQ could, in general, reproduce true fluxes at grid scales with acceptable bias. Two further sets of numerical experiments were conducted to investigate the sensitivities of the inflation factor of scaling factors and the smoother window. The results showed that the ability of CFI-CMAQ to optimize CO2 fluxes greatly relied on the choice of the inflation factor. However, the smoother window had a slight influence on the optimized results. CFI-CMAQ performed very well even with a short lag-window (e.g. 3 days).


2019 ◽  
Author(s):  
Shigeyuki Ishidoya ◽  
Hirofumi Sugawara ◽  
Yukio Terao ◽  
Naoki Kaneyasu ◽  
Nobuyuki Aoki ◽  
...  

Abstract. In order to estimate the atmospheric O2 consumption in a megacity, continuous observations of atmospheric O2 and CO2 concentrations and of CO2 flux have been carried out simultaneously at the Yoyogi (YYG) site in middle of Tokyo, Japan since March 2016. An average O2 : CO2 exchange ratio for net turbulent O2 and CO2 fluxes (ORF) between the urban area and the overlying atmosphere was obtained based on an aerodynamic method using the observed O2 and CO2 concentrations. The yearly mean ORF was found to be 1.62, falling within the range of the average OR values of liquid and gas fuels. Seasonally different diurnal ORF cycles at YYG indicated that the consumption of gas fuels was larger in the winter than that in the summer, especially in the morning and late in the evening. By using the ORF and CO2 flux values, the annual mean O2 consumption rate was estimated to be −16.3 μmol m−2 s−1, which is more than 350 times larger than the global mean atmospheric O2 consumption rate (about −4 μmol yr−1), implying that our life in a megacity is far from sustainable from a viewpoint of the conservation of atmospheric O2.


2017 ◽  
Author(s):  
Lukas Lesmeister ◽  
Matthias Koschorreck

Abstract. Greenhouse gas emissions from dry aquatic sediments are probably globally relevant. However, they are difficult to measure because of the often rocky substrate and the dynamic nature of the habitat. Here we tested the performance of different materials to seal a closed chamber to stony ground both in laboratory and field experiments. Using on-site material consistently resulted in elevated fluxes. The artefact was caused both by outgassing of the material and production of gas. The magnitude of the artefact was site dependent – the measured CO2 flux was increased between 10 and 208 %. Errors due to incomplete sealing proved to be more severe than errors due to non-inert sealing material. Pottery clay as sealing material provided a tight sealing of the chamber to the ground and no production of gases was detected. With this approach it is possible to get reliable gas fluxes from hard-substrate sites without using a permanent collar. Our test experiments confirmed that CO2 fluxes from dry aquatic sediments are similar to CO2 fluxes from normal soils.


2014 ◽  
Vol 14 (14) ◽  
pp. 20345-20381
Author(s):  
Z. Peng ◽  
M. Zhang ◽  
X. Kou ◽  
X. Tian ◽  
X. Ma

Abstract. In order to optimize surface CO2 fluxes at finer scales, a regional surface CO2 flux inversion system (Carbon Flux Inversion system and Community Multi-scale Air Quality, CFI-CMAQ) has been developed by simultaneously assimilating CO2 concentrations and surface CO2 fluxes into the regional modeling system, CMAQ. The smoothing operator is associated with the atmospheric transport model to constitute a persistence dynamical model to forecast the surface CO2 flux scaling factors. In this implementation, the "signal-to-noise" problem can be avoided; plus, any useful observed information achieved by the current assimilation cycle can be transferred into the next assimilation cycle. Thus, the surface CO2 fluxes can be optimized as a whole at the grid scale in CFI-CMAQ. The performance of CFI-CMAQ was quantitatively evaluated through a set of Observing System Simulation Experiments (OSSEs) by assimilating CO2 retrievals from GOSAT (Greenhouse Gases Observing Satellite). The results showed that the CO2 concentration assimilation using the ensemble Kalman filter (EnKF) could constrain the CO2 concentrations effectively, illustrating that the simultaneous assimilation of CO2 concentrations can provide convincing CO2 initial analysis fields for CO2 flux inversion. In addition, the CO2 flux optimization using the ensemble Kalman smoother (EnKS) demonstrated that CFI-CMAQ could in general reproduce true fluxes at finer scales with acceptable bias. Two further sets of numerical experiments were conducted to investigate the sensitivities of the inflation factor of scaling factors and the smoother window. The results showed that the ability of CFI-CMAQ to optimize CO2 fluxes greatly relied on the choice of the inflation factor. However, the smoother window had a slight influence on the optimized results. CFI-CMAQ performed very well even with a short lag-window (e.g. 3 days).


2007 ◽  
Vol 4 (6) ◽  
pp. 1005-1025 ◽  
Author(s):  
L. Kutzbach ◽  
J. Schneider ◽  
T. Sachs ◽  
M. Giebels ◽  
H. Nykänen ◽  
...  

Abstract. Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach has been justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatlands sites in Finland and a tundra site in Siberia. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. However, a rather large percentage of the exponential regression functions showed curvatures not consistent with the theoretical model which is considered to be caused by violations of the underlying model assumptions. Especially the effects of turbulence and pressure disturbances by the chamber deployment are suspected to have caused unexplainable curvatures. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes. The degree of underestimation increased with increasing CO2 flux strength and was dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.


2018 ◽  
Vol 18 (18) ◽  
pp. 13321-13328
Author(s):  
Pertti Hari ◽  
Steffen Noe ◽  
Sigrid Dengel ◽  
Jan Elbers ◽  
Bert Gielen ◽  
...  

Abstract. Photosynthesis provides carbon for the synthesis of macromolecules to construct cells during growth. This is the basis for the key role of photosynthesis in the carbon dynamics of ecosystems and in the biogenic CO2 assimilation. The development of eddy-covariance (EC) measurements for ecosystem CO2 fluxes started a new era in the field studies of photosynthesis. However, the interpretation of the very variable CO2 fluxes in evergreen forests has been problematic especially in transition times such as the spring and autumn. We apply two theoretical needle-level equations that connect the variation in the light intensity, stomatal action and the annual metabolic cycle of photosynthesis. We then use these equations to predict the photosynthetic CO2 flux in five Scots pine stands located from the northern timberline to Central Europe. Our result has strong implications for our conceptual understanding of the effects of the global change on the processes in boreal forests, especially of the changes in the metabolic annual cycle of photosynthesis.


2017 ◽  
Author(s):  
Minseok Kang ◽  
Joon Kim ◽  
Bindu Malla Thakuri ◽  
Junghwa Chun ◽  
Chunho Cho

Abstract. The continuous measurement of H2O and CO2 fluxes using the eddy covariance (EC) technique is still challenging for forests in complex terrain because of large amounts of wet canopy evaporation (EWC), which occur during and following rain events when the EC systems rarely work correctly, and the horizontal advection of CO2 generated at night. We propose new techniques for gap-filling and partitioning of the H2O and CO2 fluxes: (1) a model-stats hybrid method (MSH) and (2) a modified moving point test method (MPTm). The former enables the recovery of the missing EWC in the traditional gap-filling method and the partitioning of the evapotranspiration (ET) into transpiration and (wet canopy) evaporation. The latter determines the friction velocity (u*) threshold based on an iterative approach using moving windows for both time and u*, thereby allowing not only the nighttime CO2 flux correction and partitioning but also the assessment of the significance of the CO2 drainage. We tested and validated these new methods using the datasets from two flux towers, which are located at forests in hilly and complex terrains. The MSH reasonably recovered the missing EWC of 16 ~ 41 mm year−1 and separated it from the ET (14 ~ 23 % of the annual ET). The MPTm produced consistent carbon budgets using those from the previous research and diameter increment, while it has improved applicability. Additionally, we illustrated certain advantages of the proposed techniques, which enables us to understand better how ET responses to environmental changes and how the water cycle is connected to the carbon cycle in a forest ecosystem.


Sign in / Sign up

Export Citation Format

Share Document