scholarly journals Summer fluxes of methane and carbon dioxide from a pond and floating mat in a continental Canadian peatland

2016 ◽  
Vol 13 (12) ◽  
pp. 3777-3791 ◽  
Author(s):  
Magdalena Burger ◽  
Sina Berger ◽  
Ines Spangenberg ◽  
Christian Blodau

Abstract. Ponds smaller than 10 000 m2 likely account for about one-third of the global lake perimeter. The release of methane (CH4) and carbon dioxide (CO2) from these ponds is often high and significant on the landscape scale. We measured CO2 and CH4 fluxes in a temperate peatland in southern Ontario, Canada, in summer 2014 along a transect from the open water of a small pond (847 m2) towards the surrounding floating mat (5993 m2) and in a peatland reference area. We used a high-frequency closed chamber technique and distinguished between diffusive and ebullitive CH4 fluxes. CH4 fluxes and CH4 bubble frequency increased from a median of 0.14 (0.00 to 0.43) mmol m−2 h−1 and 4 events m−2 h−1 on the open water to a median of 0.80 (0.20 to 14.97) mmol m−2 h−1 and 168 events m−2 h−1 on the floating mat. The mat was a summer hot spot of CH4 emissions. Fluxes were 1 order of magnitude higher than at an adjacent peatland site. During daytime the pond was a net source of CO2 equivalents to the atmosphere amounting to 0.13 (−0.02 to 1.06) g CO2 equivalents m−2 h−1, whereas the adjacent peatland site acted as a sink of −0.78 (−1.54 to 0.29) g CO2 equivalents m−2 h−1. The photosynthetic CO2 uptake on the floating mat did not counterbalance the high CH4 emissions, which turned the floating mat into a strong net source of 0.21 (−0.11 to 2.12) g CO2 equivalents m−2 h−1. This study highlights the large small-scale variability of CH4 fluxes and CH4 bubble frequency at the peatland–pond interface and the importance of the often large ecotone areas surrounding small ponds as a source of greenhouse gases to the atmosphere.

2016 ◽  
Author(s):  
M. Burger ◽  
S. Berger ◽  
I. Spangenberg ◽  
C. Blodau

Abstract. Ponds smaller than 10000 m2 likely account for about one third of the global lake perimeter. The release of methane (CH4) and carbon dioxide (CO2) from these ponds is often high and significant on the landscape scale. We measured CO2 and CH4 fluxes in a temperate peatland in southern Ontario, Canada, in summer 2014 along a transect from the open water of a small pond (847 m2) towards the surrounding floating mat (5993 m2) and in a peatland reference area. We used a high-frequency closed chamber technique and distinguished between diffusive and ebullitive CH4 fluxes. CH4 fluxes and CH4 bubble frequency increased from a median of 0.14 (0.00 to 0.43) mmol m−2 h−1 and 4 events m−2 h−1 on the open water to a median of 0.80 (0.20 to 14.97) mmol m−2 h−1 and 168 events m−2 h−1 on the floating mat. The mat was a summer hot spot of CH4 emissions. Fluxes were one order of magnitude higher than at an adjacent peatland site. During daytime the pond was a net source of CO2 equivalents to the atmosphere amounting to 0.13 (−0.02 to 1.06) g CO2 equivalents m−2 h−1, whereas the adjacent peatland site acted as a sink of −0.78 (−1.54 to 0.29) g CO2 equivalents m−2 h−1. The photosynthetic CO2 uptake on the floating mat did not counterbalance the high CH4 emissions, which turned the floating mat into a strong net source of 0.21 (−0.11 to 2.12) g CO2 equivalents m−2h−1. This study highlights the large small-scale variability of CH4 fluxes and CH4 bubble frequency at the peatland-pond interface and the importance of the often large ecotone areas surrounding small ponds as a source of greenhouse gases to the atmosphere.


2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


2016 ◽  
Vol 13 (10) ◽  
pp. 3051-3070 ◽  
Author(s):  
Daniela Franz ◽  
Franziska Koebsch ◽  
Eric Larmanou ◽  
Jürgen Augustin ◽  
Torsten Sachs

Abstract. Drained peatlands often act as carbon dioxide (CO2) hotspots. Raising the groundwater table is expected to reduce their CO2 contribution to the atmosphere and revitalise their function as carbon (C) sink in the long term. Without strict water management rewetting often results in partial flooding and the formation of spatially heterogeneous, nutrient-rich shallow lakes. Uncertainties remain as to when the intended effect of rewetting is achieved, as this specific ecosystem type has hardly been investigated in terms of greenhouse gas (GHG) exchange. In most cases of rewetting, methane (CH4) emissions increase under anoxic conditions due to a higher water table and in terms of global warming potential (GWP) outperform the shift towards CO2 uptake, at least in the short term.Based on eddy covariance measurements we studied the ecosystem–atmosphere exchange of CH4 and CO2 at a shallow lake situated on a former fen grassland in northeastern Germany. The lake evolved shortly after flooding, 9 years previous to our investigation period. The ecosystem consists of two main surface types: open water (inhabited by submerged and floating vegetation) and emergent vegetation (particularly including the eulittoral zone of the lake, dominated by Typha latifolia). To determine the individual contribution of the two main surface types to the net CO2 and CH4 exchange of the whole lake ecosystem, we combined footprint analysis with CH4 modelling and net ecosystem exchange partitioning.The CH4 and CO2 dynamics were strikingly different between open water and emergent vegetation. Net CH4 emissions from the open water area were around 4-fold higher than from emergent vegetation stands, accounting for 53 and 13 g CH4 m−2 a−1 respectively. In addition, both surface types were net CO2 sources with 158 and 750 g CO2 m−2 a−1 respectively. Unusual meteorological conditions in terms of a warm and dry summer and a mild winter might have facilitated high respiration rates. In sum, even after 9 years of rewetting the lake ecosystem exhibited a considerable C loss and global warming impact, the latter mainly driven by high CH4 emissions. We assume the eutrophic conditions in combination with permanent high inundation as major reasons for the unfavourable GHG balance.


2016 ◽  
Vol 56 (1) ◽  
pp. 108 ◽  
Author(s):  
Mei Bai ◽  
David W. T. Griffith ◽  
Frances A. Phillips ◽  
Travis Naylor ◽  
Stephanie K. Muir ◽  
...  

Accurate measurements of methane (CH4) emissions from feedlot cattle are required for verifying greenhouse gas (GHG) accounting and mitigation strategies. We investigate a new method for estimating CH4 emissions by examining the correlation between CH4 and carbon dioxide (CO2) concentrations from two beef cattle feedlots in Australia representing southern temperate and northern subtropical locations. Concentrations of CH4 and CO2 were measured at the two feedlots during summer and winter, using open-path Fourier transform infrared spectroscopy. There was a strong correlation for the concentrations above background of CH4 and CO2 with concentration ratios of 0.008 to 0.044 ppm/ppm (R2 >0.90). The CH4/CO2 concentration ratio varied with animal diet and ambient temperature. The CH4/CO2 concentration ratio provides an alternative method to estimate CH4 emissions from feedlots when combined with CO2 production derived from metabolisable energy or heat production.


2012 ◽  
Vol 5 (2) ◽  
pp. 735-780 ◽  
Author(s):  
B. Pfeil ◽  
A. Olsen ◽  
D. C. E. Bakker ◽  
S. Hankin ◽  
H. Koyuk ◽  
...  

Abstract. A well documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.


2016 ◽  
Author(s):  
Sung Ching Lee ◽  
Andreas Christen ◽  
Andy T. Black ◽  
Mark S. Johnson ◽  
Rachhpal S. Jassal ◽  
...  

Abstract. Many peatlands have been drained and harvested for peat mining, which has turned them from carbon (C) sinks into C emitters. Rewetting of disturbed peatlands facilitates their ecological recovery, and may help them revert to carbon dioxide (CO2) sinks. However, rewetting may also cause substantial emissions of the more potent greenhouse gas (GHG) methane (CH4). Our knowledge on the exchange of CO2 and CH4 following rewetting during restoration of disturbed peatlands is currently limited. This study quantifies annual fluxes of CO2 and CH4 in a disturbed and rewetted area located in the Burns Bog Ecological Conservancy Area in Delta, BC, Canada. Burns Bog is recognized as the largest raised bog ecosystem on North America's West Coast. Burns Bog was substantially reduced in size and degraded by peat mining and agriculture. Since 2005, the bog has been declared a conservancy area, with restoration efforts focusing on rewetting disturbed ecosystems to recover Sphagnum and suppress fires. Using the eddy-covariance (EC) technique, we measured year-round (16th June 2015 to 15th June 2016) turbulent fluxes of CO2 and CH4 from a tower platform in an area rewetted for the last 8 years. The study area, dominated by sedges and Sphagnum, experienced a varying water table position that ranged between 7.7 (inundation) and −26.5 cm from the surface during the study year. The annual CO2 budget of the rewetted area was −179 g CO2-C m−2 year−1 (CO2 sink) and the annual CH4 budget was 16 g CH4-C m−2 year−1 (CH4 source). Gross ecosystem productivity (GEP) exceeded ecosystem respiration (Re) during summer months (June–August), causing a net CO2 uptake. In summer, high CH4 emissions (121 mg CH4-C m−2 day−1) were measured. In winter (December–February), while roughly equal magnitudes of GEP and Re made the study area CO2 neutral, very low CH4 emissions (9 mg CH4-C m−2 day−1) were observed. The key environmental factors controlling the seasonality of these exchanges were downwelling photosynthetically active radiation and 5-cm soil temperature. It appears that the high water table caused by ditch blocking which suppresses Re. With low temperatures in winter, CH4 emission was more suppressed than Re. Annual net GHG flux from CO2 and CH4 expressed in terms of CO2 equivalents (CO2e) during the study period totaled to −55 g CO2e m−2 year−1 (net CO2e sink) and 1147 g CO2e m−2 year−1 (net CO2e source) by using 100-year and 20-year global warming potential values, respectively. Consequently, the ecosystem was almost CO2e neutral during the study period expressed on a 100-year time horizon but was a significant CO2e source on a 20-year time horizon.


2021 ◽  
Vol 18 (3) ◽  
pp. 873-896
Author(s):  
Lauri Heiskanen ◽  
Juha-Pekka Tuovinen ◽  
Aleksi Räsänen ◽  
Tarmo Virtanen ◽  
Sari Juutinen ◽  
...  

Abstract. The patterned microtopography of subarctic mires generates a variety of environmental conditions, and carbon dioxide (CO2) and methane (CH4) dynamics vary spatially among different plant community types (PCTs). We studied the CO2 and CH4 exchange between a subarctic fen and the atmosphere at Kaamanen in northern Finland based on flux chamber and eddy covariance measurements in 2017–2018. We observed strong spatial variation in carbon dynamics between the four main PCTs studied, which were largely controlled by water table level and differences in vegetation composition. The ecosystem respiration (ER) and gross primary productivity (GPP) increased gradually from the wettest PCT to the drier ones, and both ER and GPP were larger for all PCTs during the warmer and drier growing season 2018. We estimated that in 2017 the growing season CO2 balances of the PCTs ranged from −20 g C m−2 (Trichophorum tussock PCT) to 64 g C m−2 (string margin PCT), while in 2018 all PCTs were small CO2 sources (10–22 g C m−2). We observed small growing season CH4 emissions (< 1 g C m−2) from the driest PCT, while the other three PCTs had significantly larger emissions (mean 7.9, range 5.6–10.1 g C m−2) during the two growing seasons. Compared to the annual CO2 balance (−8.5 ± 4.0 g C m−2) of the fen in 2017, in 2018 the annual balance (−5.6 ± 3.7 g C m−2) was affected by an earlier onset of photosynthesis in spring, which increased the CO2 sink, and a drought event during summer, which decreased the sink. The CH4 emissions were also affected by the drought. The annual CH4 balance of the fen was 7.3 ± 0.2 g C m−2 in 2017 and 6.2 ± 0.1 g C m−2 in 2018. Thus, the carbon balance of the fen was close to zero in both years. The PCTs that were adapted to drier conditions provided ecosystem-level resilience to carbon loss due to water level drawdown.


2017 ◽  
Vol 14 (11) ◽  
pp. 2799-2814 ◽  
Author(s):  
Sung-Ching Lee ◽  
Andreas Christen ◽  
Andrew T. Black ◽  
Mark S. Johnson ◽  
Rachhpal S. Jassal ◽  
...  

Abstract. Many peatlands have been drained and harvested for peat mining, agriculture, and other purposes, which has turned them from carbon (C) sinks into C emitters. Rewetting of disturbed peatlands facilitates their ecological recovery and may help them revert to carbon dioxide (CO2) sinks. However, rewetting may also cause substantial emissions of the more potent greenhouse gas (GHG) methane (CH4). Our knowledge of the exchange of CO2 and CH4 following rewetting during restoration of disturbed peatlands is currently limited. This study quantifies annual fluxes of CO2 and CH4 in a disturbed and rewetted area located in the Burns Bog Ecological Conservancy Area in Delta, BC, Canada. Burns Bog is recognized as the largest raised bog ecosystem on North America's west coast. Burns Bog was substantially reduced in size and degraded by peat mining and agriculture. Since 2005, the bog has been declared a conservancy area, with restoration efforts focusing on rewetting disturbed ecosystems to recover Sphagnum and suppress fires. Using the eddy covariance (EC) technique, we measured year-round (16 June 2015 to 15 June 2016) turbulent fluxes of CO2 and CH4 from a tower platform in an area rewetted for the last 8 years. The study area, dominated by sedges and Sphagnum, experienced a varying water table position that ranged between 7.7 (inundation) and −26.5 cm from the surface during the study year. The annual CO2 budget of the rewetted area was −179 ± 26.2 g CO2–C m−2 yr−1 (CO2 sink) and the annual CH4 budget was 17 ± 1.0 g CH4–C m−2 yr−1 (CH4 source). Gross ecosystem productivity (GEP) exceeded ecosystem respiration (Re) during summer months (June–August), causing a net CO2 uptake. In summer, high CH4 emissions (121 mg CH4–C m−2 day−1) were measured. In winter (December–February), while roughly equal magnitudes of GEP and Re made the study area CO2 neutral, very low CH4 emissions (9 mg CH4–C m−2 day−1) were observed. The key environmental factors controlling the seasonality of these exchanges were downwelling photosynthetically active radiation and 5 cm soil temperature. It appears that the high water table caused by ditch blocking suppressed Re. With low temperatures in winter, CH4 emissions were more suppressed than Re. Annual net GHG flux from CO2 and CH4 expressed in terms of CO2 equivalents (CO2 eq.) during the study period totalled −22 ± 103.1 g CO2 eq. m−2 yr−1 (net CO2 eq. sink) and 1248 ± 147.6 g CO2 eq. m−2 yr−1 (net CO2 eq. source) by using 100- and 20-year global warming potential values, respectively. Consequently, the ecosystem was almost CO2 eq. neutral during the study period expressed on a 100-year time horizon but was a significant CO2 eq. source on a 20-year time horizon.


2008 ◽  
Vol 8 (2) ◽  
pp. 7315-7337 ◽  
Author(s):  
C. Gurk ◽  
H. Fischer ◽  
P. Hoor ◽  
M.G. Lawrence ◽  
J. Lelieveld ◽  
...  

Abstract. Airborne in-situ observations of carbon dioxide (CO2) were made during 7 intensive measurement campaigns between November 2001 and April 2003 as part of the SPURT project. Vertical profiles and latitudinal gradients in the upper troposphere/lowermost stratosphere were measured along the western shore of Europe from the subtropics to high northern latitudes during different seasons. In the boundary layer, CO2 exhibits a strong seasonal cycle with the maximum mixing ratios in winter and minimum values in summer, reflecting the strength of CO2 uptake by vegetation. Seasonal variations are strongest in high latitudes and propagate to the free troposphere and lowermost stratosphere, although with reduced amplitude, resulting in increasing CO2 mixing ratios with altitude during the summer. In the lowermost stratosphere, the CO2 seasonal cycle is phase-shifted relative to the free troposphere by approximately 3 months, with highest mixing ratios during the summer.


2013 ◽  
Vol 5 (1) ◽  
pp. 125-143 ◽  
Author(s):  
B. Pfeil ◽  
A. Olsen ◽  
D. C. E. Bakker ◽  
S. Hankin ◽  
H. Koyuk ◽  
...  

Abstract. A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.


Sign in / Sign up

Export Citation Format

Share Document