scholarly journals A quest for the biological sources of long chain alkyl diols in the western tropical North Atlantic Ocean

2018 ◽  
Vol 15 (19) ◽  
pp. 5951-5968 ◽  
Author(s):  
Sergio Balzano ◽  
Julie Lattaud ◽  
Laura Villanueva ◽  
Sebastiaan W. Rampen ◽  
Corina P. D. Brussaard ◽  
...  

Abstract. Long chain alkyl diols (LCDs) are widespread in the marine water column and sediments, but their biological sources are mostly unknown. Here we combine lipid analyses with 18S rRNA gene amplicon sequencing on suspended particulate matter (SPM) collected in the photic zone of the western tropical North Atlantic Ocean at 24 stations to infer relationships between LCDs and potential LCD producers. The C30 1,15-diol was detected in all SPM samples and accounted for >95 % of the total LCDs, while minor proportions of C28 and C30 1,13-diols, C28 and C30 1,14-diols, as well as C32 1,15-diol were found. The concentration of the C30 and C32 diols was higher in the mixed layer of the water column compared to the deep chlorophyll maximum (DCM), whereas concentrations of C28 diols were comparable. Sequencing analyses revealed extremely low contributions (≈0.1 % of the 18S rRNA gene reads) of known LCD producers, but the contributions from two taxonomic classes with which known producers are affiliated, i.e. Dictyochophyceae and Chrysophyceae, followed a trend similar to that of the concentrations of C30 and C32 diols. Statistical analyses indicated that the abundance of 4 operational taxonomic units (OTUs) of the Chrysophyceae and Dictyochophyceae, along with 23 OTUs falling into other phylogenetic groups, were weakly (r≤0.6) but significantly (p value <0.01) correlated with C30 diol concentrations. It is not clear whether some of these OTUs might indeed correspond to C28−32 diol producers or whether these correlations are just indirect and the occurrence of C30 diols and specific OTUs in the same samples might be driven by other environmental conditions. Moreover, primer mismatches were unlikely, but cannot be excluded, and the variable number of rRNA gene copies within eukaryotes might have affected the analyses leading to LCD producers being undetected or undersampled. Furthermore, based on the average LCD content measured in cultivated LCD-producing algae, the detected concentrations of LCDs in SPM are too high to be explained by the abundances of the suspected LCD-producing OTUs. This is likely explained by the slower degradation of LCDs compared to DNA in the oxic water column and suggests that some of the LCDs found here were likely to be associated with suspended debris, while the DNA from the related LCD producers had been already fully degraded. This suggests that care should be taken in constraining biological sources of relatively stable biomarker lipids by quantitative comparisons of DNA and lipid abundances.

2018 ◽  
Author(s):  
Sergio Balzano ◽  
Julie Lattaud ◽  
Laura Villanueva ◽  
Sebastiaan Rampen ◽  
Corina P. D. Brussaard ◽  
...  

Abstract. Long chain alkyl diols (LCDs) are widespread in the marine water column and sediments but their biological sources are mostly unknown. Here we combine lipid analyses with 18S rRNA gene amplicon sequencing on suspended particulate matter (SPM) collected in the photic zone of the tropical North Atlantic at 24 stations to infer relationships between LCDs and potential LCD-producers. The C30 1,15-diol was detected in all SPM samples and accounted for > 95 % of the total LCDs, while minor proportions of C28 and C30 1,13-diols, C28 and C30 1,14-diols as well as C32 1,15-diol were found. The concentration of the C30 and C32 diols was higher in the mixed layer of the water column compared to the deep chlorophyll maximum (DCM), whereas concentrations of C28 diols were comparable. Sequencing analyses revealed extremely low contributions (≈ 0.1 % of the 18S rRNA gene reads) of known LCD-producers but the contributions from two taxonomic classes to which known producers are affiliated, i.e. Dictyochophyceae and Chrysophyceae, followed a trend similar to that of the concentrations of C30 and C32 diols. Statistical analyses indicated that the abundance of 4 operational taxonomic units (OTUs) of the Chrysophyceae and Dictyochophyceae, along with 23 OTUs falling in other phylogenetic groups, were significantly correlated with C30 diol concentrations. However, it is not clear whether some of these OTUs might indeed correspond to LCD-producers or whether these correlations are just indirect. Furthermore, based on the average LCD-content measured in cultivated LCD-producing algae, the detected concentrations of LCDs in SPM are too high to be explained by the abundances of the suspected LCD-producing OTUs. This is likely explained by the slower degradation of LCDs compared to DNA in the oxic water column and suggests that some of the LCDs found here were likely to be associated to suspended debris, while the DNA from the related LCD-producers had been already fully degraded. This suggests that care should be taken in constraining biological sources of relatively stable biomarker lipids by quantitative comparisons of DNA and lipid abundances.


2017 ◽  
Vol 3 ◽  
Author(s):  
LAETITIA LEMPEREUR ◽  
MORGAN DELOBELLE ◽  
MARJAN DOOM ◽  
JAN HAELTERS ◽  
ETIENNE LEVY ◽  
...  

SUMMARY On 9 November 2015, a juvenile male fin whale of 11·60 m length was observed on the bulb of a merchant vessel in the Channel Terneuzen – Ghent (The Netherlands – Belgium). A severe parasitosis was present in the right heart ventricle and caudal caval vein. Parasites were identified as Crassicauda boopis based on macroscopic and microscopic observations. The sequence of the 18S rRNA gene obtained from the parasite samples was 100% similar to the sequence of the 18S rRNA gene from Crassicauda magna available on GenBank. While adults of C. boopis and C. magna are morphologically distinct and found at different locations in the body, the molecular analysis of the 18S rRNA gene seems insufficient for reliable species identification. Although numerous C. boopis were found, the cause of death was identified as due to the collision with the ship, as suggested by the presence of a large haematoma, and the absence of evidence of renal failure. The young age of this whale and the absence of severe chronic reaction may suggest that the infestation was not yet at an advanced chronic stage.


2018 ◽  
Author(s):  
Julie Lattaud ◽  
Frédérique Kirkels ◽  
Francien Peterse ◽  
Chantal V. Freymond ◽  
Timothy I. Eglinton ◽  
...  

Abstract. Long chain diols (LCDs) occur widespread in marine environments and also in lakes and rivers. Transport of LCDs from rivers may impact the distribution of LCDs in coastal environments, however relatively little is known about the distribution and biological sources of LCDs in river systems. In this study, we investigated the distribution of LCDs in suspended particulate matter (SPM) of three river systems (Godavari, Danube, and Rhine) in relation with season, precipitation, temperature, and source catchments. The dominant long-chain diol is the C32 1,15-diol followed by the C30 1,15-diol in all studied river systems. In regions influenced by marine waters, such as delta systems, the fractional abundance of the C30 1,15-diol is substantially higher than in the river itself, suggesting different LCD producers in marine and freshwater environments. A change in the LCD distribution along the downstream transects of the rivers studied was not observed. However, an effect of river flow is observed, i.e. the concentration of the C32 1,15-diol is higher in stagnant waters, such as reservoirs and during seasons with river low stands. A seasonal change in the LCD distribution was observed in the Rhine, likely due to a change in the producers. Eukaryotic diversity analysis by 18S rRNA gene sequencing of SPM from the Rhine showed extremely low abundances of sequences (i.e.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222584 ◽  
Author(s):  
Anouck Ody ◽  
Thierry Thibaut ◽  
Léo Berline ◽  
Thomas Changeux ◽  
Jean-Michel André ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document