The role of soil characteristics on measured and modelled carbon dioxide and energy fluxes for Arctic dwarf shrub tundra sites

Author(s):  
Gesa Meyer ◽  
Elyn Humphreys ◽  
Joe Melton ◽  
Peter Lafleur ◽  
Philip Marsh ◽  
...  

<p>Four years of growing season eddy covariance measurements of net carbon dioxide (CO<sub>2</sub>) and energy fluxes were used to examine the similarities/differences in surface-atmosphere interactions at two dwarf shrub tundra sites within Canada’s Southern Arctic ecozone, separated by approximately 1000 km. Both sites, Trail Valley Creek (TVC) and Daring Lake (DL1), are characterised by similar climate (with some differences in radiation due to latitudinal differences), vegetation composition and structure, and are underlain by continuous permafrost, but differ in their soil characteristics. Total atmospheric heating (the sum of latent and sensible heat fluxes) was similar at the two sites. However, at DL1, where the surface organic layer was thinner and mineral soil coarser in texture, latent heat fluxes were greater, sensible heat fluxes were lower, soils were warmer and the active layer thicker. At TVC, cooler soils likely kept ecosystem respiration relatively low despite similar total growing season productivity. As a result, the 4-year mean net growing season ecosystem CO<sub>2 </sub>uptake (May 1 - September 30) was almost twice as large at TVC (64 ± 19 g C m<sup>-2</sup>) compared to DL1 (33 ± 11 g C m<sup>-2</sup>). These results highlight that soil and thaw characteristics are important to understand variability in surface-atmosphere interactions among tundra ecosystems.</p><p>As recent studies have shown, winter fluxes play an important role in the annual CO<sub>2</sub> balance of Arctic tundra ecosystems. However, flux measurements were not available at TVC and DL1 during the cold season. Thus, the process-based ecosystem model CLASSIC (the Canadian Land Surface Scheme including biogeochemical Cycles, formerly CLASS-CTEM) was used to simulate year-round fluxes. In order to represent the Arctic shrub tundra better, shrub and sedge plant functional types were included in CLASSIC and results were evaluated using measurements at DL1. Preliminary results indicate that cold season CO<sub>2</sub> losses are substantial and may exceed the growing season CO<sub>2</sub> uptake at DL1 during 2010-2017. The joint use of observations and models is valuable in order to better constrain the Arctic CO<sub>2</sub> balance.  </p>

2001 ◽  
Vol 31 (2) ◽  
pp. 208-223 ◽  
Author(s):  
Christopher Potter ◽  
Jill Bubier ◽  
Patrick Crill ◽  
Peter Lafleur

Predicted daily fluxes from an ecosystem model for water, carbon dioxide, and methane were compared with 1994 and 1996 Boreal Ecosystem–Atmosphere Study (BOREAS) field measurements at sites dominated by old black spruce (Picea mariana (Mill.) BSP) (OBS) and boreal fen vegetation near Thompson, Man. Model settings for simulating daily changes in water table depth (WTD) for both sites were designed to match observed water levels, including predictions for two microtopographic positions (hollow and hummock) within the fen study area. Water run-on to the soil profile from neighboring microtopographic units was calibrated on the basis of daily snowmelt and rainfall inputs to reproduce BOREAS site measurements for timing and magnitude of maximum daily WTD for the growing season. Model predictions for daily evapotranspiration rates closely track measured fluxes for stand water loss in patterns consistent with strong controls over latent heat fluxes by soil temperature during nongrowing season months and by variability in relative humidity and air temperature during the growing season. Predicted annual net primary production (NPP) for the OBS site was 158 g C·m–2 during 1994 and 135 g C·m–2 during 1996, with contributions of 75% from overstory canopy production and 25% from ground cover production. Annual NPP for the wetter fen site was 250 g C·m–2 during 1994 and 270 g C·m–2 during 1996. Predicted seasonal patterns for soil CO2 fluxes and net ecosystem production of carbon both match daily average estimates at the two sites. Model results for methane flux, which also closely match average measured flux levels of –0.5 mg CH4·m–2·day–1 for OBS and 2.8 mg CH4·m–2·day–1 for fen sites, suggest that spruce areas are net annual sinks of about –0.12 g CH4·m–2, whereas fen areas generate net annual emissions on the order of 0.3–0.85 g CH4·m–2, depending mainly on seasonal WTD and microtopographic position. Fen hollow areas are predicted to emit almost three times more methane during a given year than fen hummock areas. The validated model is structured for extrapolation to regional simulations of interannual trace gas fluxes over the entire North America boreal forest, with integration of satellite data to characterize properties of the land surface.


2014 ◽  
Vol 11 (16) ◽  
pp. 4507-4519 ◽  
Author(s):  
T. S. El-Madany ◽  
H. F. Duarte ◽  
D. J. Durden ◽  
B. Paas ◽  
M. J. Deventer ◽  
...  

Abstract. Sodar (SOund Detection And Ranging), eddy-covariance, and tower profile measurements of wind speed and carbon dioxide were performed during 17 consecutive nights in complex terrain in northern Taiwan. The scope of the study was to identify the causes for intermittent turbulence events and to analyze their importance in nocturnal atmosphere–biosphere exchange as quantified with eddy-covariance measurements. If intermittency occurs frequently at a measurement site, then this process needs to be quantified in order to achieve reliable values for ecosystem characteristics such as net ecosystem exchange or net primary production. Fourteen events of intermittent turbulence were identified and classified into above-canopy drainage flows (ACDFs) and low-level jets (LLJs) according to the height of the wind speed maximum. Intermittent turbulence periods lasted between 30 and 110 min. Towards the end of LLJ or ACDF events, positive vertical wind velocities and, in some cases, upslope flows occurred, counteracting the general flow regime at nighttime. The observations suggest that the LLJs and ACDFs penetrate deep into the cold air pool in the valley, where they experience strong buoyancy due to density differences, resulting in either upslope flows or upward vertical winds. Turbulence was found to be stronger and better developed during LLJs and ACDFs, with eddy-covariance data presenting higher quality. This was particularly indicated by spectral analysis of the vertical wind velocity and the steady-state test for the time series of the vertical wind velocity in combination with the horizontal wind component, the temperature, and carbon dioxide. Significantly higher fluxes of sensible heat, latent heat, and shear stress occurred during these periods. During LLJs and ACDFs, fluxes of sensible heat, latent heat, and CO2 were mostly one-directional. For example, exclusively negative sensible heat fluxes occurred while intermittent turbulence was present. Latent heat fluxes were mostly positive during LLJs and ACDFs, with a median value of 34 W m−2, while outside these periods the median was 2 W m−2. In conclusion, intermittent turbulence periods exhibit a strong impact on nocturnal energy and mass fluxes.


2020 ◽  
Vol 17 (15) ◽  
pp. 4025-4042
Author(s):  
Dean Howard ◽  
Yannick Agnan ◽  
Detlev Helmig ◽  
Yu Yang ◽  
Daniel Obrist

Abstract. Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold-season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year micrometeorological data set of methane and carbon dioxide fluxes, along with supporting soil pore gas profiles, that provide near-continuous data throughout the active summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and 89 g C m−2 a−1 respectively, with cold-season methane emission representing 54 % of the annual total. In the other year, net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold-season methane emission here representing 82 % of the annual total – a larger proportion than has been previously reported in the Arctic tundra. Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons – where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling temperature–methane flux dynamics.


2020 ◽  
Vol 59 (3) ◽  
pp. 381-400
Author(s):  
Mikael P. Hiestand ◽  
Andrew M. Carleton

AbstractSpatial variations in land use/land cover (LULC) in the Midwest U.S. Corn Belt—specifically, deciduous forest and croplands—have been suggested as influencing convective rainfall through mesoscale circulations generated in the atmosphere’s boundary layer. However, the contributing role of latent and sensible heat fluxes for these two LULC types, and their modulation by synoptic weather systems, have not been determined. This study compares afternoon averages of convective fluxes at two AmeriFlux towers in relation to manually determined synoptic pressure patterns covering the nine growing seasons (1 May–30 September) of 1999–2007. AmeriFlux tower U.S.-Bo1 in eastern Illinois represents agricultural land use—alternating between maize and soybean crops—and AmeriFlux tower U.S.-MMS in south-central Indiana represents deciduous forest cover. Phenologically, the latent and sensible heat fluxes vary inversely across the growing season, and the greatest flux differences between cropland and deciduous forest occur early in the season. Differences in the surface heat fluxes between crop and forest LULC types vary in magnitude according to synoptic type. Moreover, statistically significant differences in latent and sensible heat between the forest and cropland sites occur for the most frequently occurring synoptic pattern of a low pressure system to the west and high pressure to the east of the Corn Belt. The present study lays the groundwork for determining the physical mechanisms of enhanced convection in the Corn Belt, including how LULC-induced mesoscale circulations might interact with synoptic weather patterns to enhance convective rainfall.


2005 ◽  
Vol 44 (8) ◽  
pp. 1180-1194 ◽  
Author(s):  
J. A. Salmond ◽  
T. R. Oke ◽  
C. S. B. Grimmond ◽  
S. Roberts ◽  
B. Offerle

Abstract Turbulent fluxes of carbon dioxide and sensible heat were observed in the surface layer of the weakly convective nocturnal boundary layer over the center of the city of Marseille, France, during the Expérience sur Sites pour Contraindre les Modèles de Pollution Atmosphérique et de Transport d’Emission (ESCOMPTE) field experiment in the summer of 2001. The data reveal intermittent events or bursts in the time series of carbon dioxide (CO2) concentration and air temperature that are superimposed upon the background values. These features relate to intermittent structures in the fluxes of CO2 and sensible heat. In Marseille, CO2 is primarily emitted into the atmosphere at street level from vehicle exhausts. In a similar way, nocturnal sensible heat fluxes are most likely to originate in the deep street canyons that are warmer than adjacent roof surfaces. Wavelet analysis is used to examine the hypothesis that CO2 concentrations can be used as a tracer to identify characteristics of the venting of pollutants and heat from street canyons into the above-roof nocturnal urban boundary layer. Wavelet analysis is shown to be effective in the identification and analysis of significant events and coherent structures within the turbulent time series. Late in the evening, there is a strong correlation between the burst structures observed in the air temperature and CO2 time series. Evidence suggests that the localized increases of temperature and CO2 observed above roof level in the urban boundary layer (UBL) are related to intermittent venting of sensible heat from the warmer urban canopy layer (UCL). However, later in the night, local advection of CO2 in the UBL, combined with reduced traffic emissions in the UCL, limit the value of CO2 as a tracer of convective plumes in the UBL.


1989 ◽  
Vol 46 (1-2) ◽  
pp. 53-67 ◽  
Author(s):  
Shashi B. Verma ◽  
Joon Kim ◽  
Robert J. Clement

2008 ◽  
Vol 45 (11) ◽  
pp. 1221-1234 ◽  
Author(s):  
Bianca Fréchette ◽  
Anne de Vernal ◽  
Pierre J.H. Richard

This study presents Last Interglacial and Holocene vegetation and climate changes at Fog Lake (67°11′N, 63°15′W) on eastern Baffin Island, Arctic Canada. The vegetation cover is reported as vegetation structural types (or biomes). July air temperature and sunshine during the growing season (June–July–August–September) were reconstructed from pollen assemblages using the modern analogue technique. The vegetation of the Last Interglacial period evolved from a prostrate dwarf-shrub tundra to a low- and high-shrub tundra vegetation. The succession of four Arctic biomes was distinguished from the Last Interglacial sediments, whereas only one Arctic biome was recorded in the Holocene sediments. From ca. 8300 cal. years BP to present, hemiprostrate dwarf-shrub tundra occupied the soils around Fog Lake. During the Last Interglacial, growing season sunshine was higher than during the Holocene and July air temperature was 4 to 5 °C warmer than present. A principal component analysis helped in assessing relationship between floristic gradients and climate. The major vegetation changes through the Last Interglacial and Holocene were driven by July air temperature variations, whereas the minor, or subtle, vegetation changes seem rather correlated to September sunshine. This study demonstrates that growing season sunshine conditions can be reconstructed from Arctic pollen assemblages, thus providing information on feedbacks associated with cloud cover and summer temperatures, and therefore growing season length.


2019 ◽  
Author(s):  
Dean Howard ◽  
Yannick Agnan ◽  
Detlev Helmig ◽  
Yu Yang ◽  
Daniel Obrist

Abstract. Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year micrometeorological data set of methane and carbon dioxide fluxes that provides near-continuous data throughout the active summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and 89 g C m−2 a−1 respectively, with cold season methane emission representing 54% of the annual total. In the other year, net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold season methane emission here representing 82 % of the annual total – a larger proportion than has been previously reported in the Arctic tundra. Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons – where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling temperature–methane flux dynamics.


2020 ◽  
Author(s):  
Gesa Meyer ◽  
Elyn R. Humphreys ◽  
Joe R. Melton ◽  
Alex J. Cannon ◽  
Peter M. Lafleur

Abstract. The Arctic is warming more rapidly than other regions of the world leading to ecosystem change including shifts in vegetation communities, permafrost degradation and alteration of tundra surface-atmosphere energy and carbon (C) fluxes, among others. However, year-round C and energy flux measurements at high-latitude sites remain rare. This poses a challenge for evaluating the impacts of climate change on Arctic tundra ecosystems and for developing and evaluating process-based models, which may be used to predict regional and global energy and C feedbacks to the climate system. Our study used 14 years of seasonal eddy covariance (EC) measurements of carbon dioxide (CO2), water and energy fluxes and winter soil chamber CO2 flux measurements at a dwarf-shrub tundra site underlain by continuous permafrost in Canada's Southern Arctic ecozone to evaluate the incorporation of shrub plant functional types (PFTs) in the Canadian Land Surface Scheme Including biogeochemical Cycles (CLASSIC), the land surface component of the Canadian Earth System Model. In addition to new PFTs, a modification of the efficiency with which water evaporates from the ground surface was applied. This modification addressed a high ground evaporation bias that reduced model performance when soils became very dry, limited heat flow into the ground and reduced plant productivity through water stress effects. Compared to the grass and tree PFTs previously used by CLASSIC to represent the vegetation in Arctic permafrost-affected regions, simulations with the new shrub PFTs better capture the physical and biogeochemical impact of shrubs on the magnitude and seasonality of energy and CO2 fluxes at the dwarf-shrub tundra evaluation site. The revised model, however, tends to overestimate gross primary productivity, particularly in spring, and overestimated late winter CO2 emissions. On average, annual net ecosystem CO2 exchange was positive for all simulations, suggesting this site was a net CO2 source of 18 ± 4 g C m−2 year−1 using shrub PFTs, 15 ± 6 g C m−2 year−1 using grass PFTs, and 25 ± 5 g C m−2 year−1 using tree PFTs. These results highlight the importance of using appropriate PFTs in process-based models to simulate current and future Arctic surface-atmosphere interactions.


2020 ◽  
Author(s):  
Lukas Papritz

<p align="justify">Recent decades have revealed dramatic changes in the high Arctic (> 80°N) related to natural variability and anthropogenic climate change. In particular, episodes of extremely warm temperatures in the lower troposphere and their role for sea ice melting have gained considerable attention. While it has been recognized that injections of warm and humid air masses contribute to wintertime warm anomalies, summertime warm anomalies have also been linked to blocking anticyclones within the high Arctic. Yet, the relative importance of the various thermodynamic and atmospheric dynamical processes that can contribute to the formation of extreme warm anomalies in the high Arctic is poorly understood.</p><p align="justify">In this work, we present a systematic analysis of the processes leading to the formation of winter- and summertime lower tropospheric warm extremes in the high Arctic by means of kinematic backward trajectories based on the ERA-Interim reanalysis. The trajectories enable us to quantify the relative contributions of poleward transport from (potentially) warmer regions, adiabatic warming due to subsidence, and diabatic heating associated with surface sensible heat fluxes and latent heat release. Furthermore, we relate these processes to atmospheric dynamical flow features such as atmospheric blocking and extratropical cyclones.</p><p align="justify">Our analyses reveal that subsidence in blocking anticyclones over the Barents and Kara Seas and diabatic warming by surface sensible heat fluxes are the dominant mechanisms leading to wintertime warm extremes (contributing about 40% each), whereas the transport from southerly latitudes – predominantly accomplished by the injection of warm and humid air masses associated with an intensified and westward displaced storm track in the Nordic Seas - is of secondary importance (20%). Summertime warm anomalies, in contrast, are essentially the result of subsidence in blocking anticyclones (70%) that are located within the high Arctic. Thus, our findings point towards a rich, seasonally varying spectrum of dynamical and thermodynamic processes contributing to Arctic warm extremes that result from a complex interplay between transport induced by dynamical weather systems and diabatic processes. Furthermore, they emphasize the importance of processes within the Arctic for the formation of warm extremes.</p><p align="justify">Papritz, L., 2019: Arctic lower tropospheric warm and cold extremes: horizontal and vertical transport, diabatic processes, and linkage to synoptic circulation features, <em>J. Climate</em>, doi: 10.1175/JCLI-D-19-0638.1</p>


Sign in / Sign up

Export Citation Format

Share Document