scholarly journals Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China

2021 ◽  
Vol 18 (17) ◽  
pp. 4855-4872
Author(s):  
Xinyu Liu ◽  
Xixi Lu ◽  
Ruihong Yu ◽  
Heyang Sun ◽  
Hao Xue ◽  
...  

Abstract. Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. Riparian wetlands play a significant role in regulating carbon and nitrogen cycles. In this study, we analyzed the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from riparian wetlands in the Xilin River basin to understand the role of these ecosystems in greenhouse gas (GHG) emissions. Moreover, the impact of the catchment hydrology and soil property variations on GHG emissions over time and space was evaluated. Our results demonstrate that riparian wetlands emit larger amounts of CO2 (335–2790 mgm-2h-1 in the wet season and 72–387 mgm-2h-1 in the dry season) than CH4 and N2O to the atmosphere due to high plant and soil respiration. The results also reveal clear seasonal variations and spatial patterns along the transects in the longitudinal direction. N2O emissions showed a spatiotemporal pattern similar to that of CO2 emissions. Near-stream sites were the only sources of CH4 emissions, while the other sites served as sinks for these emissions. Soil moisture content and soil temperature were the essential factors controlling GHG emissions, and abundant aboveground biomass promoted the CO2, CH4, and N2O emissions. Moreover, compared to different types of grasslands, riparian wetlands were the potential hotspots of GHG emissions in the Inner Mongolian region. Degradation of downstream wetlands has reduced the soil carbon pool by approximately 60 %, decreased CO2 emissions by approximately 35 %, and converted the wetland from a CH4 and N2O source to a sink. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect GHG emissions.

2020 ◽  
Author(s):  
Xinyu Liu ◽  
Xixi Lu ◽  
Ruihong Yu ◽  
Hao Xue ◽  
Zhen Qi ◽  
...  

Abstract. Riparian wetlands play a significant role in regulating carbon and nitrogen cycles. Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. In this study, we analyzed the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from riparian wetlands in the Xilin River Basin to understand the role of these ecosystems in greenhouse gas (GHG) emissions. Moreover, the impact of the catchment hydrology and soil property variations on GHG emissions over time and space were evaluated. Our results demonstrate that riparian wetlands emit larger amounts of CO2 (335–2790 mg m−2 h−1 in August and 72–387 mg m−2 h−1 in October) than CH4 and N2O to the atmosphere due to high plant and soil respiration. The results also reveal clear seasonal variations and spatial patterns along the transects and in the longitudinal direction. N2O emissions showed a spatiotemporal pattern similar to that of CO2 emissions. Near-stream sites were the only sources of CH4 emissions, while the other sites served as sinks for these emissions. Soil moisture content and soil temperature were the essential factors controlling the GHG emissions, and abundant aboveground biomass promoted the CO2, CH4, and N2O emissions. Moreover, compared to different types of grasslands, riparian wetlands were the potential hotspots of GHG emissions in the Inner Mongolian region. Degradation of downstream wetlands has resulted in the loss of the soil carbon pool by approximately 60 %, reducing CO  emissions by approximately 35 %, and shifting the CH4 and N2O emissions from the source to the sink. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect the GHG emissions.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 662
Author(s):  
Bassim Mohammed Hashim ◽  
Maitham Abdullah Sultan ◽  
Ali Al Maliki ◽  
Nadhir Al-Ansari

The energy sector is integral to the wellbeing of the entire Iraqi economy and will remain so well into the future. In the current study, the Intergovernmental Panel on Climate Change (IPCC) methodology was used to estimate CO2, CH4, and N2O emissions from oil refining and electricity generation in Iraq for a period exceeding 25 years. From 1990, Iraq experienced two wars and an economic siege, then faced political, social, and security instability, which affected its energy production. The results showed that the CO2, CH4, and N2O emissions from the oil refining and electricity generation in Iraq experienced a sharp decline in the years 1991, 2003, and 2007 due to a decrease in the production of oil derivatives in refineries, according to political and security conditions. The total CO2 emissions from the types of fuel used in electricity generation in Iraq was approximately 14,000 Gg and 58,000 Gg in 1990 and 2017, respectively. The increase in CO2 emissions was greater than 300% between 1990 and 2017. The continued use of poor types of fuel, such as fuel oil and crude oil, will lead to an increase in greenhouse gas (GHG) emissions from these sources, and higher levels of environmental pollution.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2038 ◽  
Author(s):  
Yuexin Zheng ◽  
Guangxin Zhang ◽  
Yanfeng Wu ◽  
Y. Jun Xu ◽  
Changlei Dai

Many studies have found that damming a river can change downstream hydrology, sediment transport, channel morphology, and fish habitat. However, little is known about river dam effects on downstream riparian wetland dynamics and their quantitative relationship with hydrological alterations. In this study, hydrological time series and wetland distribution data spanning nearly 40 years (1978–2016) before and after the construction of a large dam in 2005 across the Nenjiang River in Northeast China were used to reveal the impact of dam on the downstream discharge regime and wetland degradation. Hydro-statistical and stepwise multiple regression analyses were performed to quantify the relationship of riparian wetland area with a metrics of 33 hydrological indicators. Dam construction caused decline in peak discharge, flood frequency, and magnitude. Moreover, 150 km riparian wetlands along the downstream of the dam was largely reduced. The count and duration of high flow pulses, 1-day maximum, and date of maximum discharge changed significantly after the dam construction. The hydrological changes have made a significant contribution to the 44% reduction in riparian wetlands following the dam construction. Our results indicated that hydrological alterations caused by dam regulation led to the area reduction of downstream riparian wetlands. The findings provide relevant information for developing best dam operation practices to protect and restore downstream wetland ecosystems.


2013 ◽  
Vol 869-870 ◽  
pp. 836-839
Author(s):  
Jian Jun Wang ◽  
Li Li

This paper uses STRIPAT models to find the impact of population, economy and technology on CO2 emissions of China. The result shows the impact of population, economy and technology on CO2 emissions are 1.253, 1.076, and 1.077 respectively. According to the future prospect of China, three scenarios of Chinas economic development are given to forecast the CO2 emissions, the forecasting results shows that if Chinas economic, population and energy consumption is increasing 7%, 0.4%, 5% every year, respectively. CO2 emissions will reach 21.05×108t in 2020. The CO2 emissions per unit GDP is decreasing by 45.54% in 2020 compared to 2005, which can fulfill the Chinese governments promise to decrease the GHG emissions per unit GDP by 40-45% in 2020 compared to 2005.


2015 ◽  
Vol 12 (18) ◽  
pp. 15301-15336 ◽  
Author(s):  
D. E. Pelster ◽  
M. C. Rufino ◽  
T. Rosenstock ◽  
J. Mango ◽  
G. Saiz ◽  
...  

Abstract. Few field studies examine greenhouse gas (GHG) emissions from African agricultural systems resulting in high uncertainty for national inventories. We provide here the most comprehensive study in Africa to date, examining annual CO2, CH4 and N2O emissions from 59 plots, across different vegetation types, field types and land classes in western Kenya. The study area consists of a lowland area (approximately 1200 m a.s.l.) rising approximately 600 m to a highland plateau. Cumulative annual fluxes ranged from 2.8 to 15.0 Mg CO2-C ha−1, −6.0 to 2.4 kg CH4-C ha−1 and −0.1 to 1.8 kg N2O-N ha−1. Management intensity of the plots did not result in differences in annual fluxes for the GHGs measured (P = 0.46, 0.67 and 0.14 for CO2, N2O and CH4 respectively). The similar emissions were likely related to low fertilizer input rates (≤ 20 kg ha−1). Grazing plots had the highest CO2 fluxes (P = 0.005); treed plots were a larger CH4 sink than grazing plots (P = 0.05); while N2O emissions were similar across vegetation types (P = 0.59). This case study is likely representative for low fertilizer input, smallholder systems across sub-Saharan Africa, providing critical data for estimating regional or continental GHG inventories. Low crop yields, likely due to low inputs, resulted in high (up to 67 g N2O-N kg−1 aboveground N uptake) yield-scaled emissions. Improving crop production through intensification of agricultural production (i.e. water and nutrient management) may be an important tool to mitigate the impact of African agriculture on climate change.


Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 150 ◽  
Author(s):  
Xiaocang Xu ◽  
Lu Zhang ◽  
Linhong Chen ◽  
Chengjie Liu

The decision in 2006 to abolish the agricultural tax, which had lasted for thousands of years, contributed to the prosperity of agriculture, and with it the growing importance of soil N2O emissions in China. However, most of the previous literature ignored soil N2O emissions due to their too small share in total agricultural greenhouse gas (GHG) emissions. This paper attempts to take soil N2O emissions as an important variable in the measurement of agricultural green total factor productivity (AGTFP), which incorporates environmental pollution into the analytical framework of agricultural production efficiency. Three impressive results were found. Firstly, soil N2O emissions play an increasingly important role in agricultural GHG emissions. The proportion of soil N2O emissions in agricultural GHG emissions increased from 4.52% in 1998 to 4.83% in 2006, and then to 5.36% in 2016. Secondly, the regional difference of soil N2O emissions in AGTFP is visible. In 2016, although soil N2O emissions accounted for a small proportion (about 5%) of the total agricultural GHG emissions in China, the AGTFP including soil N2O emissions was much lower than that excluding soil N2O emissions, especially in areas with high agricultural and population density. Finally, over time, soil N2O emissions have had an increasing effect on AGTFP. Compared with 1998–2006, the impact of excluding soil N2O emissions on AGTFP in 2007–2016 was more evident than that including soil N2O emissions.


2016 ◽  
Vol 13 (18) ◽  
pp. 5221-5244 ◽  
Author(s):  
Arne Poyda ◽  
Thorsten Reinsch ◽  
Christof Kluß ◽  
Ralf Loges ◽  
Friedhelm Taube

Abstract. A large share of peatlands in northwestern Germany is drained for agricultural purposes, thereby emitting high amounts of greenhouse gases (GHGs). In order to quantify the climatic impact of fen soils in dairy farming systems of northern Germany, GHG exchange and forage yield were determined on four experimental sites which differed in terms of management and drainage intensity: (a) rewetted and unutilized grassland (UG), (b) intensive and wet grassland (GW), (c) intensive and moist grassland (GM) and (d) arable forage cropping (AR). Net ecosystem exchange (NEE) of CO2 and fluxes of CH4 and N2O were measured using closed manual chambers. CH4 fluxes were significantly affected by groundwater level (GWL) and soil temperature, whereas N2O fluxes showed a significant relation to the amount of nitrate in top soil. Annual balances of all three gases, as well as the global warming potential (GWP), were significantly correlated to mean annual GWL. A 2-year mean GWP, combined from CO2–C eq. of NEE, CH4 and N2O emissions, as well as C input (slurry) and C output (harvest), was 3.8, 11.7, 17.7 and 17.3 Mg CO2–C eq. ha−1 a−1 for sites UG, GW, GM and AR, respectively (standard error (SE) 2.8, 1.2, 1.8, 2.6). Yield-related emissions for the three agricultural sites were 201, 248 and 269 kg CO2–C eq. (GJ net energy lactation; NEL)−1 for sites GW, GM and AR, respectively (SE 17, 9, 19). The carbon footprint of agricultural commodities grown on fen soils depended on long-term drainage intensity rather than type of management, but management and climate strongly influenced interannual on-site variability. However, arable forage production revealed a high uncertainty of yield and therefore was an unsuitable land use option. Lowest yield-related GHG emissions were achieved by a three-cut system of productive grassland swards in combination with a high GWL (long-term mean  ≤  20 cm below the surface).


2017 ◽  
Vol 68 (8) ◽  
pp. 1700-1702
Author(s):  
Valeriu Danciulescu ◽  
Andrei Vasile ◽  
Luoana Florentina Pascu ◽  
Bogdan Stanescu ◽  
Ileana Nicolescu

The paper presents the results of tests carried out on a Romanian farm with the purpose of assessing greenhouse gas (GHG) emissions specific to agricultural activities. GHG emissions from the agricultural sector come mainly from the livestock sector, manure management, land cultivation and fertilization. The tests carried out mainly focused on the CO2 , CH4 and N2O emissions generated from related manure storage activities as well as the emission level identified in animal shelters. For a correct interpretation of the results obtained, at the same time with the measurement of the GHG concentration, the weather parameters were measured: temperature, humidity and wind direction. The results obtained revealed the presence of these compounds in the air in the animal shelters and in the ambient air (CO2 and CH4) in concentrations that are in the range identified in similar studies around the world. The pollutant dispersion in the air leads to a reduction in the pollutant concentration with increasing distance from the observed source as well as the measurement points at 50, 100 and 500 m, that reaches values below the detection limit of the instrument for CH4 and N2O, whereas in the case of CO2 it reaches the level of the usual concentration in the ambient air.


Sign in / Sign up

Export Citation Format

Share Document