scholarly journals Supplementary material to "<i>In situ</i> interactive characteristics of reactive minerals in soil colloids and soil carbon preservation differentially revealed by nanoscale secondary ion mass spectrometry and X-ray absorption fine structure spectroscopy"

Author(s):  
Jian Xiao ◽  
Xinhua He ◽  
Ying Zhou ◽  
Lirong Zheng ◽  
Jialong Hao ◽  
...  
2016 ◽  
Author(s):  
Jian Xiao ◽  
Xinhua He ◽  
Ying Zhou ◽  
Lirong Zheng ◽  
Jialong Hao ◽  
...  

Abstract. Mineral binding is a major mechanism for soil carbon (C) stabilization. However, the submicron information about the in situ mechanisms of different fertilization practices affecting organo-mineral complexes and associated C preservation remains unclear. Here, we applied nano-scale 20 secondary ion mass spectrometry (NanoSIMS), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure spectroscopy (XAFS) to examine differentiating effects of inorganic versus organic fertilization on interactions between highly reactive minerals and soil C preservation. To examine such interactions, soils and their extracted colloids were collected during a 24-year long-term fertilization period (1990-2014) (no-fertilization, Control; chemical nitrogen (N), phosphorus (P) and 25 potassium (K) fertilization, NPK; and NPK plus swine manure fertilization, NPKM). The results for different fertilization conditions showed a ranked soil organic matter (SOM) concentration with NPKM > NPK > Control. Meanwhile, oxalate extracted Al (Alo), Fe (Feo), short range ordered (SRO) Al (Alxps), Fe (Fexps), and dissolved organic carbon (DOC) ranked with NPKM > Control > NPK, but ratios of DOC/Alxps and DOC/Fexps ranked with NPKM > NPK > Control. Compared with the NPK 30 treatment, NPKM treatment enhanced the C binding loadings of Al and Fe minerals in soil colloids at the submicron scale. Furthermore, a greater concentration of highly reactive Al and Fe minerals was present under NPKM than under NPK. Together, these submicron scale findings suggest that both reactive mineral species and their associations with C are differentially affected by inorganic and organic fertilization.


Author(s):  
K.K. Soni ◽  
D.B. Williams ◽  
J.M. Chabala ◽  
R. Levi-Setti ◽  
D.E. Newbury

In contrast to the inability of x-ray microanalysis to detect Li, secondary ion mass spectrometry (SIMS) generates a very strong Li+ signal. The latter’s potential was recently exploited by Williams et al. in the study of binary Al-Li alloys. The present study of Al-Li-Cu was done using the high resolution scanning ion microprobe (SIM) at the University of Chicago (UC). The UC SIM employs a 40 keV, ∼70 nm diameter Ga+ probe extracted from a liquid Ga source, which is scanned over areas smaller than 160×160 μm2 using a 512×512 raster. During this experiment, the sample was held at 2 × 10-8 torr.In the Al-Li-Cu system, two phases of major importance are T1 and T2, with nominal compositions of Al2LiCu and Al6Li3Cu respectively. In commercial alloys, T1 develops a plate-like structure with a thickness <∼2 nm and is therefore inaccessible to conventional microanalytical techniques. T2 is the equilibrium phase with apparent icosahedral symmetry and its presence is undesirable in industrial alloys.


2020 ◽  
Author(s):  
Feifei Jia ◽  
Jie Wang ◽  
Yanyan Zhang ◽  
Qun Luo ◽  
Luyu Qi ◽  
...  

<p></p><p><i>In situ</i> visualization of proteins of interest at single cell level is attractive in cell biology, molecular biology and biomedicine, which usually involves photon, electron or X-ray based imaging methods. Herein, we report an optics-free strategy that images a specific protein in single cells by time of flight-secondary ion mass spectrometry (ToF-SIMS) following genetic incorporation of fluorine-containing unnatural amino acids as a chemical tag into the protein via genetic code expansion technique. The method was developed and validated by imaging GFP in E. coli and human HeLa cancer cells, and then utilized to visualize the distribution of chemotaxis protein CheA in E. coli cells and the interaction between high mobility group box 1 protein and cisplatin damaged DNA in HeLa cells. The present work highlights the power of ToF-SIMS imaging combined with genetically encoded chemical tags for <i>in situ </i>visualization of proteins of interest as well as the interactions between proteins and drugs or drug damaged DNA in single cells.</p><p></p>


Author(s):  
Kazumasa Murata ◽  
Junya Ohyama ◽  
Atsushi Satsuma

In the present study, the redispersion behavior of Ag particles on ZSM-5 in the presence of coke was observed using in situ X-ray absorption fine structure (XAFS) spectroscopy.


2021 ◽  
Author(s):  
Gregory M. Su ◽  
Han Wang ◽  
Brandon R. Barnett ◽  
Jeffrey R. Long ◽  
David Prendergast ◽  
...  

In situ near edge X-ray absorption fine structure spectroscopy directly probes unoccupied states associated with backbonding interactions between the open metal site in a metal–organic framework and various small molecule guests.


2003 ◽  
Vol 107 (46) ◽  
pp. 12562-12565 ◽  
Author(s):  
Shuji Matsuo ◽  
Ponnusamy Nachimuthu ◽  
Dennis W. Lindle ◽  
Hisanobu Wakita ◽  
Rupert C. C. Perera

Sign in / Sign up

Export Citation Format

Share Document