scholarly journals Optical and molecular-level characterization of fluvial organic matter biodegradation in a highly urbanized river system

Author(s):  
Most Shirina Begum ◽  
Hyojin Jin ◽  
Inae Jang ◽  
Jung-Min Lee ◽  
Han Bin Oh ◽  
...  

Abstract. Rapid urbanization worldwide is changing both the transport of organic matter (OM) and CO2 emission in urban streams and rivers, yet little is known as to how the altered quality of riverine OM affects biodegradation and CO2 emission. The relationships between the chemical properties and biodegradation of riverine OM, including dissolved and particulate OM (DOM and POM), were examined against the level of anthropogenic perturbation along the Han River, a river system in South Korea that has been highly modified by dams and urban water pollution. DOM optical properties and biodegradable dissolved organic carbon (BDOC), together with in situ measurements of the partial pressure of CO2 (pCO2) using a membrane-enclosed sensor, were compared between the up-, mid-, and downstream reaches of the Han River and three urban tributaries in a basin-scale field campaign combined with a 7 day incubation of both filtered and unfiltered samples. Another 5 day incubation was conducted with unfiltered water samples from a downstream river site and an urban tributary, in isolation and mixed (1 : 1), to measure changes in dissolved CO2 concentrations at 10-min intervals and BDOC and optical properties at intervals of 1–2 days. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) was used to detect molecular-level changes in DOM composition between the initial and post-incubation samples. The average BDOC concentration in the urban tributaries was 4–12 times higher than those of three mainstem reaches, while BDOC was highly variable at three downstream sites and tended to be higher at the mainstem sites affected by agricultural runoff or dams than at the forested headwater stream. Longitudinal increases in protein-like and microbial humic-like fluorescence, fluorescence index (FI), and biological index (BIX) reflected increasing inputs of anthropogenic DOM along the downstream reach and urban tributaries. These optical indices, along with pCO2, were significantly correlated with BDOC concentrations measured at 12 sites. The cumulative CO2 production measured in the second incubation was greatest in the mixture, followed by the urban tributary and mainstem samples in the descending order. The amount of CO2 produced in the mixture was greater than the BDOC measured in the same sample or the average of CO2 produced in the separate samples, indicating a mixing-enhanced biodegradation of DOM including the fraction transformed from soluble components of POM. FT-ICR-MS analysis revealed a much larger number of molecules consumed (3984) than those produced (771) during the incubation of the mainstem sample in contrast to the produced molecules (2789) exceeding the consumed molecules (1479) in the tributary sample, indicating a high rate of OM processing in the urban tributary that might be limited in the availability of immediately consumable organic materials. Overall results suggest that water pollution, along with impoundment effects of dams, can alter the optical properties and biodegradability of both DOM and POM in highly urbanized watersheds to such a degree that can induce a priming effect on OM biodegradation and CO2 emission.

2011 ◽  
Vol 124 (1-4) ◽  
pp. 100-107 ◽  
Author(s):  
Ruth Flerus ◽  
Boris P. Koch ◽  
Philippe Schmitt-Kopplin ◽  
Matthias Witt ◽  
Gerhard Kattner

2021 ◽  
Vol 425 ◽  
pp. 130622
Author(s):  
Suona Zhang ◽  
Zhineng Hao ◽  
Jingfu Liu ◽  
Leo Gutierrez ◽  
Jean-Philippe Croué

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2766 ◽  
Author(s):  
Jandyson Santos ◽  
Alberto Wisniewski Jr. ◽  
Marcos Eberlin ◽  
Wolfgang Schrader

Different ionization techniques based on different principles have been applied for the direct mass spectrometric (MS) analysis of crude oils providing composition profiles. Such profiles have been used to infer a number of crude oil properties. We have tested the ability of two major atmospheric pressure ionization techniques, electrospray ionization (ESI(±)) and atmospheric pressure photoionization (APPI(+)), in conjunction with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The ultrahigh resolution and accuracy measurements of FT-ICR MS allow for the correlation of mass spectrometric (MS) data with crude oil American Petroleum Institute (API) gravities, which is a major quality parameter used to guide crude oil refining, and represents a value of the density of a crude oil. The double bond equivalent (DBE) distribution as a function of the classes of constituents, as well as the carbon numbers as measured by the carbon number distributions, were examined to correlate the API gravities of heavy, medium, and light crude oils with molecular FT-ICR MS data. An aromaticity tendency was found to directly correlate the FT-ICR MS data with API gravities, regardless of the ionization technique used. This means that an analysis on the molecular level can explain the differences between a heavy and a light crude oil on the basis of the aromaticity of the compounds in different classes. This tendency of FT-ICR MS with all three techniques, namely, ESI(+), ESI(−), and APPI(+), indicates that the molecular composition of the constituents of crude oils is directly associated with API gravity.


2021 ◽  
Vol 99 ◽  
pp. 80-89 ◽  
Author(s):  
Minru Liu ◽  
Yunkai Tan ◽  
Kejing Fang ◽  
Changya Chen ◽  
Zhihua Tang ◽  
...  

2009 ◽  
Vol 395 (3) ◽  
pp. 797-807 ◽  
Author(s):  
Gabriel Morales-Cid ◽  
Istvan Gebefugi ◽  
Basem Kanawati ◽  
Mourad Harir ◽  
Norbert Hertkorn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document