scholarly journals Impacts of Nitrogen Addition on Nitrous Oxide Emission: Model-Data Comparison

2018 ◽  
Author(s):  
Yujin Zhang ◽  
Minna Ma ◽  
Huajun Fang ◽  
Dahe Qin ◽  
Shulan Cheng ◽  
...  

Abstract. The contributions of long-lived nitrous oxide (N2O) to the global climate and environment have received increasing attention. Especially, atmospheric nitrogen (N) deposition has substantially increased in recent decades due to extensive use of fossil fuels in industry, which strongly stimulates the N2O emissions of the terrestrial ecosystem. Several models have been developed to simulate N2O emission, but there are still large differences in their N2O emission simulations and responses to atmospheric deposition over global or regional scales. Using observations from N addition experiments in a subtropical forest, this study compared six widely-used N2O models (i.e. DayCENT, DLEM, DNDC, DyN, NOE, and NGAS) to investigate their performances for reproducing N2O emission, and especially the impacts of two types of N additions (i.e. ammonium and nitrate: NH4+ and NO3−, respectively) and two levels (low and high) on N2O emission. In general, the six models reproduced the seasonal variations of N2O emission, but failed to reproduce relatively larger N2O emissions due to NH4+ compared to NO3− additions. Few models indicated larger N2O emission under high N addition levels for both NH4+ and NO3−. Moreover, there were substantial model differences for simulating the ratios of N2O emission from nitrification and denitrification processes due to disagreements in model structures and algorithms. This analysis highlights the need to improve representation of N2O production and diffusion, and the control of soil water-filled pore space on these processes in order to simulate the impacts of N deposition on N2O emission.

2014 ◽  
Vol 11 (18) ◽  
pp. 4941-4951 ◽  
Author(s):  
W. Zhang ◽  
X. Zhu ◽  
Y. Luo ◽  
R. Rafique ◽  
H. Chen ◽  
...  

Abstract. Leguminous tree plantations at phosphorus (P) limited sites may result in excess nitrogen (N) and higher rates of nitrous oxide (N2O) emissions. However, the effects of N and P applications on soil N2O emissions from plantations with N-fixing vs. non-N-fixing tree species have rarely been studied in the field. We conducted an experimental manipulation of N and/or P additions in two plantations with Acacia auriculiformis (AA, N-fixing) and Eucalyptus urophylla (EU, non-N-fixing) in South China. The objective was to determine the effects of N or P addition alone, as well as NP application together on soil N2O emissions from these tropical plantations. We found that the average N2O emission from control was greater in the AA (2.3 ± 0.1 kg N2O–N ha−1 yr−1) than in EU plantation (1.9 ± 0.1 kg N2O–N ha−1 yr−1). For the AA plantation, N addition stimulated N2O emission from the soil while P addition did not. Applications of N with P together significantly decreased N2O emission compared to N addition alone, especially in the high-level treatments (decreased by 18%). In the EU plantation, N2O emissions significantly decreased in P-addition plots compared with the controls; however, N and NP additions did not. The different response of N2O emission to N or P addition was attributed to the higher initial soil N status in the AA than that of EU plantation, due to symbiotic N fixation in the former. Our result suggests that atmospheric N deposition potentially stimulates N2O emissions from leguminous tree plantations in the tropics, whereas P fertilization has the potential to mitigate N-deposition-induced N2O emissions from such plantations.


2016 ◽  
Vol 13 (11) ◽  
pp. 3503-3517 ◽  
Author(s):  
Mianhai Zheng ◽  
Tao Zhang ◽  
Lei Liu ◽  
Weixing Zhu ◽  
Wei Zhang ◽  
...  

Abstract. Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-growth forest and two N-limited younger forests (a mixed and a pine forest) in southern China to test the following hypotheses: (1) soil N2O emission is the highest in old-growth forest due to the N-rich soil; (2) N addition increases N2O emission more in the old-growth forest than in the two younger forests; (3) P addition decreases N2O emission more in the old-growth forest than in the two younger forests; and (4) P addition alleviates the stimulation of N2O emission by N addition. The following four treatments were established in each forest: Control, N addition (150 kg N ha−1 yr−1), P addition (150 kg P ha−1 yr−1), and NP addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). From February 2007 to October 2009, monthly quantification of soil N2O emission was performed using static chamber and gas chromatography techniques. Mean N2O emission was shown to be significantly higher in the old-growth forest (13.9 ± 0.7 µg N2O-N m−2 h−1) than in the mixed (9.9 ± 0.4 µg N2O-N m−2 h−1) or pine (10.8 ± 0.5 µg N2O-N m−2 h−1) forests, with no significant difference between the latter two. N addition significantly increased N2O emission in the old-growth forest but not in the two younger forests. However, both P and NP addition had no significant effect on N2O emission in all three forests, suggesting that P addition alleviated the stimulation of N2O emission by N addition in the old-growth forest. Although P fertilization may alleviate the stimulated effects of atmospheric N deposition on N2O emission in N-rich forests, this effect may only occur under high N deposition and/or long-term P addition, and we suggest future investigations to definitively assess this management strategy and the importance of P in regulating N cycles from regional to global scales.


Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 165 ◽  
Author(s):  
Ram C. Dalal ◽  
Weijin Wang ◽  
G. Philip Robertson ◽  
William J. Parton

Increases in the concentrations of greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and halocarbons in the atmosphere due to human activities are associated with global climate change. The concentration of N2O has increased by 16% since 1750. Although atmospheric concentration of N2O is much smaller (314 ppb in 1998) than of CO2 (365 ppm), its global warming potential (cumulative radiative forcing) is 296 times that of the latter in a 100-year time horizon. Currently, it contributes about 6% of the overall global warming effect but its contribution from the agricultural sector is about 16%. Of that, almost 80% of N2O is emitted from Australian agricultural lands, originating from N fertilisers (32%), soil disturbance (38%), and animal waste (30%). Nitrous oxide is primarily produced in soil by the activities of microorganisms during nitrification, and denitrification processes. The ratio of N2O to N2 production depends on oxygen supply or water-filled pore space, decomposable organic carbon, N substrate supply, temperature, and pH and salinity. N2O production from soil is sporadic both in time and space, and therefore, it is a challenge to scale up the measurements of N2O emission from a given location and time to regional and national levels.Estimates of N2O emissions from various agricultural systems vary widely. For example, in flooded rice in the Riverina Plains, N2O emissions ranged from 0.02% to 1.4% of fertiliser N applied, whereas in irrigated sugarcane crops, 15.4% of fertiliser was lost over a 4-day period. Nitrous oxide emissions from fertilised dairy pasture soils in Victoria range from 6 to 11 kg N2O-N/ha, whereas in arable cereal cropping, N2O emissions range from <0.01% to 9.9% of N fertiliser applications. Nitrous oxide emissions from soil nitrite and nitrates resulting from residual fertiliser and legumes are rarely studied but probably exceed those from fertilisers, due to frequent wetting and drying cycles over a longer period and larger area. In ley cropping systems, significant N2O losses could occur, from the accumulation of mainly nitrate-N, following mineralisation of organic N from legume-based pastures. Extensive grazed pastures and rangelands contribute annually about 0.2 kg N/ha as N2O (93 kg/ha per year CO2-equivalent). Tropical savannas probably contribute an order of magnitude more, including that from frequent fires. Unfertilised forestry systems may emit less but the fertilised plantations emit more N2O than the extensive grazed pastures. However, currently there are limited data to quantify N2O losses in systems under ley cropping, tropical savannas, and forestry in Australia. Overall, there is a need to examine the emission factors used in estimating national N2O emissions; for example, 1.25% of fertiliser or animal-excreted N appearing as N2O (IPCC 1996). The primary consideration for mitigating N2O emissions from agricultural lands is to match the supply of mineral N (from fertiliser applications, legume-fixed N, organic matter, or manures) to its spatial and temporal needs by crops/pastures/trees. Thus, when appropriate, mineral N supply should be regulated through slow-release (urease and/or nitrification inhibitors, physical coatings, or high C/N ratio materials) or split fertiliser application. Also, N use could be maximised by balancing other nutrient supplies to plants. Moreover, non-legume cover crops could be used to take up residual mineral N following N-fertilised main crops or mineral N accumulated following legume leys. For manure management, the most effective practice is the early application and immediate incorporation of manure into soil to reduce direct N2O emissions as well as secondary emissions from deposition of ammonia volatilised from manure and urine.Current models such as DNDC and DAYCENT can be used to simulate N2O production from soil after parameterisation with the local data, and appropriate modification and verification against the measured N2O emissions under different management practices.In summary, improved estimates of N2O emission from agricultural lands and mitigation options can be achieved by a directed national research program that is of considerable duration, covers sampling season and climate, and combines different techniques (chamber and micrometeorological) using high precision analytical instruments and simulation modelling, under a range of strategic activities in the agriculture sector.


2018 ◽  
Vol 15 (22) ◽  
pp. 7043-7057 ◽  
Author(s):  
Martin Ley ◽  
Moritz F. Lehmann ◽  
Pascal A. Niklaus ◽  
Jörg Luster

Abstract. Semi-terrestrial soils such as floodplain soils are considered potential hot spots of nitrous oxide (N2O) emissions. Microhabitats in the soil – such as within and outside of aggregates, in the detritusphere, and/or in the rhizosphere – are considered to promote and preserve specific redox conditions. Yet our understanding of the relative effects of such microhabitats and their interactions on N2O production and consumption in soils is still incomplete. Therefore, we assessed the effect of aggregate size, buried leaf litter, and plant–soil interactions on the occurrence of enhanced N2O emissions under simulated flooding/drying conditions in a mesocosm experiment. We used two model soils with equivalent structure and texture, comprising macroaggregates (4000–250 µm) or microaggregates (<250 µm) from a N-rich floodplain soil. These model soils were planted with basket willow (Salix viminalis L.), mixed with leaf litter or left unamended. After 48 h of flooding, a period of enhanced N2O emissions occurred in all treatments. The unamended model soils with macroaggregates emitted significantly more N2O during this period than those with microaggregates. Litter addition modulated the temporal pattern of the N2O emission, leading to short-term peaks of high N2O fluxes at the beginning of the period of enhanced N2O emission. The presence of S. viminalis strongly suppressed the N2O emission from the macroaggregate model soil, masking any aggregate-size effect. Integration of the flux data with data on soil bulk density, moisture, redox potential and soil solution composition suggest that macroaggregates provided more favourable conditions for spatially coupled nitrification–denitrification, which are particularly conducive to net N2O production. The local increase in organic carbon in the detritusphere appears to first stimulate N2O emissions; but ultimately, respiration of the surplus organic matter shifts the system towards redox conditions where N2O reduction to N2 dominates. Similarly, the low emission rates in the planted soils can be best explained by root exudation of low-molecular-weight organic substances supporting complete denitrification in the anoxic zones, but also by the inhibition of denitrification in the zone, where rhizosphere aeration takes place. Together, our experiments highlight the importance of microhabitat formation in regulating oxygen (O2) content and the completeness of denitrification in soils during drying after saturation. Moreover, they will help to better predict the conditions under which hot spots, and “hot moments”, of enhanced N2O emissions are most likely to occur in hydrologically dynamic soil systems like floodplain soils.


2011 ◽  
Vol 8 (2) ◽  
pp. 2057-2092 ◽  
Author(s):  
D. Zona ◽  
I. A. Janssens ◽  
M. S. Verlinden ◽  
L. S. Broeckx ◽  
J. Cools ◽  
...  

Abstract. A large fraction of the West European landscape is used for intensive agriculture. Several of these countries have very high nitrous oxide (N2O) emissions, because of substantial use of fertilizers and high rates of atmospheric nitrogen deposition. N2O production in soils is controlled by water-filled pore space (WFPS) and substrate availability (NO3). Here we show that extreme precipitation (80 mm rainfall in 48 h) after a long dry period, led to a week-long peak in N2O emissions (up to about 2200 μg N2O-N m−2 h−1). In the first four of these peak emission days, N2O fluxes showed a pronounced diurnal pattern correlated to daytime increase in temperature and wind speed. It is possible that N2O was transported through the transpiration stream of the poplar trees and emitted through the stomates. However, during the following three high emission days, N2O emission was fairly stable with no pronounced diurnal trend, and was correlated with wind speed and WFPS (at 20 and 40 cm depth) but no longer with soil temperature. We hypothesized that wind speed facilitated N2O emission from the soil to the atmosphere through a significant pressure-pumping. Successive rainfall events and similar WFPS after this first intense precipitation did not lead to N2O emissions of the same magnitude. These findings suggest that climate change-induced modification in precipitation patterns may lead to high N2O emission pulses from soil, such that sparser and more extreme rainfall events after longer dry periods could lead to peak N2O emissions. The cumulative effects of more variable climate on annual N2O emission are still largely uncertain and need further investigation.


2016 ◽  
Vol 56 (3) ◽  
pp. 337 ◽  
Author(s):  
J. Li ◽  
J. Luo ◽  
Y. Shi ◽  
Y. Li ◽  
Y. Ma ◽  
...  

Urine patches in grazed pastures have been identified as important sources of nitrous oxide (N2O) emissions. An increase in N2O emissions is possible where urine patches coincide with dung patches and farm dairy effluent (FDE) applications. The aim of the present study was to quantify the effects of dung additions and fresh FDE applications on N2O emissions from urine patches. A field experiment was conducted on a pasture site at the AgResearch’s Ruakura dairy farm in Hamilton, New Zealand. A closed soil chamber technique was used to measure the N2O emissions from a free-draining volcanic soil that received urine (492 kg N/ha, simulated urine patches), with or without dung (1146 kg N/ha) and fresh FDE (100 kg N/ha) and to compare these with controls receiving no urine. The addition of dung delayed the peak N2O fluxes from the urine patches by ~30 days. This could be due to temporary nitrogen (N) immobilisation during decomposition of carbon from the dung. However, over the whole measurement period (271 days), dung addition increased the N2O emission factor (EF, % of applied N emitted as N2O) for the urine from 1.02% to 2.09%. The application of fresh FDE increased the EF to 1.40%. The effluent- or dung-induced increases in N2O emissions from the urine patches were possibly caused both by the direct input of N from effluent or dung and through the indirect priming effect of addition of dung or effluent on the availability of N from urine patches for N2O production. We conclude that when EFs are used in calculations of N2O emissions from urine, consideration should be given to the likelihood of coincidence with dung or FDE applications.


2014 ◽  
Vol 11 (1) ◽  
pp. 1413-1442 ◽  
Author(s):  
W. Zhang ◽  
X. Zhu ◽  
Y. Luo ◽  
R. Rafique ◽  
H. Chen ◽  
...  

Abstract. Leguminous tree plantations at phosphorus (P) limited sites may result in higher rates of nitrous oxide (N2O) emissions, however, the effects of nitrogen (N) and P applications on soil N2O emissions from plantations with N-fixing vs. non-N-fixing tree species has rarely been studied in the field. We conducted an experimental manipulation of N and P additions in two tropical plantations with Acacia auriculiformis (AA) and Eucalyptus urophylla (EU) tree species in South China. The objective was to determine the effects of N- or P-addition alone, as well as NP application together on soil N2O emissions from tropical plantations with N-fixing vs. non-N-fixing tree species. We found that the average N2O emission from control was greater in AA (2.26 ± 0.06 kg N2O-N ha−1 yr−1) than in EU plantation (1.87 ± 0.05 kg N2O-N ha−1 yr−1). For the AA plantation, N-addition stimulated the N2O emission from soil while P-addition did not. Applications of N with P together significantly decreased N2O emission compared to N-addition alone, especially in high level treatment plots (decreased by 18%). In the EU plantation, N2O emissions significantly decreased in P-addition plots compared with the controls, however, N- and NP-additions did not. The differing response of N2O emissions to N- or P-addition was attributed to the higher initial soil N status in the AA than that of the EU plantation, due to symbiotic N fixation in the former. Our results suggest that atmospheric N deposition potentially stimulates N2O emissions from leguminous tree plantations in the tropics, whereas P fertilization has the potential to mitigate N deposition-induced N2O emissions from such plantations.


2016 ◽  
Author(s):  
M. H. Zheng ◽  
T. Zhang ◽  
L. Liu ◽  
W. X. Zhu ◽  
W. Zhang ◽  
...  

Abstract. Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-growth forest and two N-limited younger forests (a mixed and a pine forest) in southern China, to test the following hypotheses: (1) soil N2O emission is the highest in old-growth forest due to the N-rich soil; (2) N addition increases N2O emission more in the old-growth forest than in the two younger forests; (3) P addition decreases N O emission more in the old-growth forest than in the two younger forests; and (4) P addition alleviates the stimulation of N2O emission by N addition. The following four treatments were established in each forest: Control, N addition (150 kg N ha–1 yr–1), P addition (150 kg P ha–1 yr–1), and NP addition (150 kg N ha–1 yr–1 plus 150 kg P ha–1 yr–1). From February 2007 to October 2009, monthly quantification of soil N2O emission was performed using static chamber and gas chromatography techniques. Mean N2O emission was shown to be significantly higher in the old-growth forest (13.86 ± 0.71 μg N2O-N m–2 h–1) than in the mixed (9.86 ± 0.38 μg N2O-N m–2 h–1) or pine (10.83 ± 0.52 μg N) forests, with no significant difference between the latter two. N addition significantly increased N2O emission in the old-growth forest but not in the two younger forests. However, both P- and NP-addition had no significant effect on N2O emission in all three forests, suggesting that P addition alleviated the stimulation of N2O emission by N addition in the old-growth forest. Although P fertilization may alleviate the stimulated effects of atmospheric N deposition on N O emission in N-rich forests, we suggest future investigations to definitively assess this management strategy and the importance of P in regulating N cycles from regional to global scales.


2021 ◽  
Author(s):  
Jenie A. Gil ◽  
Maija E. Marushchak ◽  
Tobias Rütting ◽  
Elizabeth M. Baggs ◽  
Tibisay Pérez ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from permafrost-affected terrestrial ecosystems have received little attention, largely because they have been thought to be negligible. Recent studies, however, have shown that there are habitats in subarctic tundra emitting N2O at high rates, such as bare peat surfaces on permafrost peatlands. The processes behind N2O production in these high-emitting habitats are, however, poorly understood. In this study, we established an in situ 15N-labelling experiment with the main objectives to partition the microbial sources of N2O emitted from bare peat surfaces (BP) on permafrost peatlands and to study the fate of ammonium and nitrate in these soils and in adjacent vegetated peat surfaces (VP) showing low N2O emissions. Our results confirm the hypothesis that denitrification is mostly responsible for the high N2O emissions from BP surfaces. During the study period denitrification contributed with ~79 % of the total N2O emission in BP, while the contribution of ammonia oxidation was less, about 19 %. However, nitrification is a key process for the overall N2O production in these soils with negligible external nitrogen (N) load because it is responsible for nitrite/nitrate supply for denitrification, as also supported by relatively high gross nitrification rates in BP. Generally, both gross N mineralization and gross nitrification rates were much higher in BP with high N2O emissions than in VP, where the high C / N ratio together with low water content was likely limiting N mineralization and nitrification and, consequently, N2O production. Also, competition for mineral N between plants and microbes was additionally limiting N availability for N2O production in VP. Our results show that multiple factors control N2O production in permafrost peatlands, the absence of plants being a key factor together with inter-mediate to high water content and low C / N ratio, all factors which also impact on gross N turnover rates. The intermediate to high soil water content which creates anaerobic microsites in BP is a key N2O emission driver for the prevalence of denitrification to occur. This knowledge is important for evaluating future permafrost –N feedback loops from the Arctic.


2021 ◽  
Vol 13 (9) ◽  
pp. 4928
Author(s):  
Alicia Vanessa Jeffary ◽  
Osumanu Haruna Ahmed ◽  
Roland Kueh Jui Heng ◽  
Liza Nuriati Lim Kim Choo ◽  
Latifah Omar ◽  
...  

Farming systems on peat soils are novel, considering the complexities of these organic soil. Since peat soils effectively capture greenhouse gases in their natural state, cultivating peat soils with annual or perennial crops such as pineapples necessitates the monitoring of nitrous oxide (N2O) emissions, especially from cultivated peat lands, due to a lack of data on N2O emissions. An on-farm experiment was carried out to determine the movement of N2O in pineapple production on peat soil. Additionally, the experiment was carried out to determine if the peat soil temperature and the N2O emissions were related. The chamber method was used to capture the N2O fluxes daily (for dry and wet seasons) after which gas chromatography was used to determine N2O followed by expressing the emission of this gas in t ha−1 yr−1. The movement of N2O horizontally (832 t N2O ha−1 yr−1) during the dry period was higher than in the wet period (599 t N2O ha−1 yr−1) because of C and N substrate in the peat soil, in addition to the fertilizer used in fertilizing the pineapple plants. The vertical movement of N2O (44 t N2O ha−1 yr−1) was higher in the dry season relative to N2O emission (38 t N2O ha−1 yr−1) during the wet season because of nitrification and denitrification of N fertilizer. The peat soil temperature did not affect the direction (horizontal and vertical) of the N2O emission, suggesting that these factors are not related. Therefore, it can be concluded that N2O movement in peat soils under pineapple cultivation on peat lands occurs horizontally and vertically, regardless of season, and there is a need to ensure minimum tilling of the cultivated peat soils to prevent them from being an N2O source instead of an N2O sink.


Sign in / Sign up

Export Citation Format

Share Document