scholarly journals Controls of terrestrial ecosystem nitrogen loss on simulated productivity responses to elevated CO<sub>2</sub>

2018 ◽  
Author(s):  
Johannes Meyerholt ◽  
Sönke Zaehle

Abstract. The availability of nitrogen is one of the primary nutritional controls on plant growth. Terrestrial ecosystem nitrogen availability is not only determined by inputs of fixation, deposition, and mineralization, but also regulated by the rates with which nitrogen is lost through various pathways. Large-scale nitrogen loss rates have been associated with considerable uncertainty, as process rates and controlling factors of the different loss pathways have been difficult to characterize in the field. Therefore, the nitrogen loss representations in terrestrial biosphere models vary substantially, adding to nitrogen cycle-related uncertainty and resulting in varying predictions of how the biospheric carbon sink will evolve under future scenarios of elevated atmospheric CO2. Here, we test three published approaches to represent ecosystem level nitrogen loss in a common carbon-nitrogen terrestrial biosphere model with respect to their impact on projections of the carbon effect of elevated CO2. We find that despite differences in predicted responses of nitrogen loss rates to biogeochemical and climate forcing, the variety of nitrogen loss representation between models only leads to small variety in carbon sink predictions. The nitrogen loss responses are particularly uncertain in the boreal and tropical regions, where plant growth is strongly nitrogen limited or nitrogen turnover rates are usually high, respectively. This highlights the need for better resolution of nitrogen loss fluxes through global measurements to inform models.

2018 ◽  
Vol 15 (18) ◽  
pp. 5677-5698 ◽  
Author(s):  
Johannes Meyerholt ◽  
Sönke Zaehle

Abstract. The availability of nitrogen is one of the primary controls on plant growth. Terrestrial ecosystem nitrogen availability is not only determined by inputs from fixation, deposition, or weathering, but is also regulated by the rates with which nitrogen is lost through various pathways. Estimates of large-scale nitrogen loss rates have been associated with considerable uncertainty, as process rates and controlling factors of the different loss pathways have been difficult to characterize in the field. Therefore, the nitrogen loss representations in terrestrial biosphere models vary substantially, adding to nitrogen cycle-related uncertainty and resulting in varying predictions of how the biospheric carbon sink will evolve under future scenarios of elevated atmospheric CO2. Here, we test three commonly applied approaches to represent ecosystem-level nitrogen loss in a common carbon–nitrogen terrestrial biosphere model with respect to their impact on projections of the effect of elevated CO2. We find that despite differences in predicted responses of nitrogen loss rates to elevated CO2 and climate forcing, the variety of nitrogen loss representation between models only leads to small variety in carbon sink predictions. The nitrogen loss responses are particularly uncertain in the boreal and tropical regions, where plant growth is strongly nitrogen-limited or nitrogen turnover rates are usually high, respectively. This highlights the need for better representation of nitrogen loss fluxes through global measurements to inform models.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1254-1257
Author(s):  
Jing Wang ◽  
Run He Shi ◽  
Lu Zhang

Kyoto Protocol states that developed countries have the responsibility to reduce the amount of greenhouse gas emissions. It, also, suggests that developed countries take measures to enhance carbon sink. Therefore, every country pays more attention on the research of global carbon cycle. China, a developing country with a fast economic increasing rate, has urgent need of related data and information so as to adjust its national development plan and negotiate with other countries. Remote sensing is one of the most important technologies and data sources for large-scale carbon-related researches including terrestrial ecosystem carbon cycling law, carbon sink/source pattern and sink enhancement technology. This paper introduces recent applications of remote sensing technology to the following aspects in China: monitoring land cover, simulating carbon flux, spatial distribution of carbon sink and carbon sink enhancement measures.


2012 ◽  
Vol 367 (1586) ◽  
pp. 222-235 ◽  
Author(s):  
David Medvigy ◽  
Paul R. Moorcroft

Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 320
Author(s):  
Dingrao Feng ◽  
Meichen Fu ◽  
Yiyu Sun ◽  
Wenkai Bao ◽  
Min Zhang ◽  
...  

Vegetation cover plays a key role in terrestrial ecosystem; therefore, it is important for researchers to investigate the variation and influencing factors of vegetation cover. China has experienced a large-scale vegetation cover change in recent years. We summarized the literature of vegetation cover change and revealed how large-scale anthropogenic activities influence vegetation cover change in China. Afforestation and intensification of cropland played a key role in large-scale greening. Urbanization showed a “U” shape to influence vegetation cover change. Mining and reclamation, land abandonment and land consolidation, and regional natural protection all had a unique influence on the change of vegetation cover. Indeed, the large-scale vegetation cover change was caused by interaction of anthropogenic factors and part human-driven climate change. Anthropogenic factors influenced climate change to indirectly alter the condition of plant growth. Interaction between climate change and human activities influence on vegetation cover still needs to be further investigated in the future.


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2021 ◽  
Vol 13 (6) ◽  
pp. 1180
Author(s):  
Da Guo ◽  
Xiaoning Song ◽  
Ronghai Hu ◽  
Xinming Zhu ◽  
Yazhen Jiang ◽  
...  

The Hindu Kush Himalayan (HKH) region is one of the most ecologically vulnerable regions in the world. Several studies have been conducted on the dynamic changes of grassland in the HKH region, but few have considered grassland net ecosystem productivity (NEP). In this study, we quantitatively analyzed the temporal and spatial changes of NEP magnitude and the influence of climate factors on the HKH region from 2001 to 2018. The NEP magnitude was obtained by calculating the difference between the net primary production (NPP) estimated by the Carnegie–Ames Stanford Approach (CASA) model and the heterotrophic respiration (Rh) estimated by the geostatistical model. The results showed that the grassland ecosystem in the HKH region exhibited weak net carbon uptake with NEP values of 42.03 gC∙m−2∙yr−1, and the total net carbon sequestration was 0.077 Pg C. The distribution of NEP gradually increased from west to east, and in the Qinghai–Tibet Plateau, it gradually increased from northwest to southeast. The grassland carbon sources and sinks differed at different altitudes. The grassland was a carbon sink at 3000–5000 m, while grasslands below 3000 m and above 5000 m were carbon sources. Grassland NEP exhibited the strongest correlation with precipitation, and it had a lagging effect on precipitation. The correlation between NEP and the precipitation of the previous year was stronger than that of the current year. NEP was negatively correlated with temperature but not with solar radiation. The study of the temporal and spatial dynamics of NEP in the HKH region can provide a theoretical basis to help herders balance grazing and forage.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 682
Author(s):  
Bruno Henrique Silva Dias ◽  
Sung-Hee Jung ◽  
Juliana Velasco de Castro Oliveira ◽  
Choong-Min Ryu

Plant growth-promoting rhizobacteria (PGPR) associated with plant roots can trigger plant growth promotion and induced systemic resistance. Several bacterial determinants including cell-wall components and secreted compounds have been identified to date. Here, we review a group of low-molecular-weight volatile compounds released by PGPR, which improve plant health, mostly by protecting plants against pathogen attack under greenhouse and field conditions. We particularly focus on C4 bacterial volatile compounds (BVCs), such as 2,3-butanediol and acetoin, which have been shown to activate the plant immune response and to promote plant growth at the molecular level as well as in large-scale field applications. We also disc/ uss the potential applications, metabolic engineering, and large-scale fermentation of C4 BVCs. The C4 bacterial volatiles act as airborne signals and therefore represent a new type of biocontrol agent. Further advances in the encapsulation procedure, together with the development of standards and guidelines, will promote the application of C4 volatiles in the field.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 753
Author(s):  
Guadalupe Sáez-Cano ◽  
Marcos Marvá ◽  
Paloma Ruiz-Benito ◽  
Miguel A. Zavala

The prediction of tree growth is key to further understand the carbon sink role of forests and the short-term forest capacity on climate change mitigation. In this work, we used large-scale data available from three consecutive forest inventories in a Euro-Mediterranean region and the Bertalanffy–Chapman–Richards equation to model up to a decade’s tree size variation in monospecific forests in the growing stages. We showed that a tree-level fitting with ordinary differential equations can be used to forecast tree diameter growth across time and space as function of environmental characteristics and initial size. This modelling approximation was applied at different aggregation levels to monospecific regions with forest inventories to predict trends in aboveground tree biomass stocks. Furthermore, we showed that this model accurately forecasts tree growth temporal dynamics as a function of size and environmental conditions. Further research to provide longer term prediction forest stock dynamics in a wide variety of forests should model regeneration and mortality processes and biotic interactions.


2018 ◽  
Vol 14 (8) ◽  
pp. 1229-1252 ◽  
Author(s):  
Carlye D. Peterson ◽  
Lorraine E. Lisiecki

Abstract. We present a compilation of 127 time series δ13C records from Cibicides wuellerstorfi spanning the last deglaciation (20–6 ka) which is well-suited for reconstructing large-scale carbon cycle changes, especially for comparison with isotope-enabled carbon cycle models. The age models for the δ13C records are derived from regional planktic radiocarbon compilations (Stern and Lisiecki, 2014). The δ13C records were stacked in nine different regions and then combined using volume-weighted averages to create intermediate, deep, and global δ13C stacks. These benthic δ13C stacks are used to reconstruct changes in the size of the terrestrial biosphere and deep ocean carbon storage. The timing of change in global mean δ13C is interpreted to indicate terrestrial biosphere expansion from 19–6 ka. The δ13C gradient between the intermediate and deep ocean, which we interpret as a proxy for deep ocean carbon storage, matches the pattern of atmospheric CO2 change observed in ice core records. The presence of signals associated with the terrestrial biosphere and atmospheric CO2 indicates that the compiled δ13C records have sufficient spatial coverage and time resolution to accurately reconstruct large-scale carbon cycle changes during the glacial termination.


Sign in / Sign up

Export Citation Format

Share Document