scholarly journals Development of nascent autotrophic carbon fixation systems in various redox conditions of the fluid degassing in early Earth

2018 ◽  
pp. 1-19
Author(s):  
Sergey A. Marakushev ◽  
Ol'ga V. Belonogova

<p><strong>Abstract.</strong> Strategies for the origin and development of primary metabolism on early Earth were determined by the two main regimes of degassing of Earth in the form of CO<sub>2</sub> or CH<sub>4</sub> fluid impulses. Among the existing theories of the autotrophic origin of the life, CO<sub>2</sub> is usually considered the carbon source for nascent autotrophic metabolism. However, the ancestral carbon used in metabolism may have been derived from CH<sub>4</sub> if the outflow of magma fluid to the surface of the Earth consisted mainly of methane. Primary biochemical systems are present in methane degassing regimes developed in an environment of high partial pressure of methane, which is a source of carbon for nascent metabolic systems. Due to the absence of molecular oxygen in the Archaean conditions, this metabolism would have been anaerobic, i.e., oxidation of methane must be realized by inorganic high-potential electron acceptors. In light of the primacy and predominance of CH<sub>4</sub>-dependent metabolism in hydrothermal systems of the ancient Earth, we propose a model of carbon fixation, which is a sequence of reactions in a hypothetical methane-fumarate (MF) cycle. Thermodynamics calculations showed a high efficiency of oxidation of methane to acetate (methanotrophic acetogenesis) by oxidized nitrogen compounds in hydrothermal systems. Thermodynamically favorable were also reactions involving the introduction of carbon methane into the intermediates of the proposed MF cycle. The methane oxidation reactions with the use of oxygen of iron mineral buffers are closer to the equilibrium state, which apparently determines the possibilities of primordial cycle flow in the forward or reverse directions.</p>

2019 ◽  
Vol 16 (8) ◽  
pp. 1817-1828 ◽  
Author(s):  
Sergey A. Marakushev ◽  
Ol'ga V. Belonogova

Abstract. The origin and development of the primary autotrophic metabolism on early Earth were influenced by the two main regimes of degassing of the Earth – reducing (predominance CH4) and oxidative (CO2). Among the existing theories of the autotrophic origin of life in hydrothermal environments, CO2 is usually considered to be the carbon source for nascent autotrophic metabolism. However, the ancestral carbon used in metabolism may have been derived from CH4 if the outflow of magma fluid to the surface of the Earth consisted mainly of methane. In such an environment, the primary autotrophic metabolic systems had to be methanotrophic. Due to the absence of molecular oxygen in the Archean conditions, this metabolism would have been anaerobic; i.e., oxidation of methane must be realized by inorganic high-potential electron acceptors. In light of the primacy and prevalence of CH4-dependent metabolism in hydrothermal systems of the ancient Earth, we propose a model of carbon fixation where the methane is fixed or transformed in a sequence of reactions in an autocatalytic methane–fumarate cycle. Nitrogen oxides are thermodynamically the most favorable among possible oxidants of methane; however, even the activity of oxygen created by mineral buffers of iron in hydrothermal conditions is sufficient for methanotrophic acetogenesis. The hydrothermal system model is considered in the form of a phase diagram, which demonstrates the area of redox and P and T conditions favorable for the development of the primary methanotrophic metabolism.


2018 ◽  
Vol 84 (11) ◽  
Author(s):  
Shawn E. McGlynn ◽  
Grayson L. Chadwick ◽  
Ariel O'Neill ◽  
Mason Mackey ◽  
Andrea Thor ◽  
...  

ABSTRACTPhylogenetically diverse environmental ANME archaea and sulfate-reducing bacteria cooperatively catalyze the anaerobic oxidation of methane oxidation (AOM) in multicelled consortia within methane seep environments. To better understand these cells and their symbiotic associations, we applied a suite of electron microscopy approaches, including correlative fluorescencein situhybridization-electron microscopy (FISH-EM), transmission electron microscopy (TEM), and serial block face scanning electron microscopy (SBEM) three-dimensional (3D) reconstructions. FISH-EM of methane seep-derived consortia revealed phylogenetic variability in terms of cell morphology, ultrastructure, and storage granules. Representatives of the ANME-2b clade, but not other ANME-2 groups, contained polyphosphate-like granules, while some bacteria associated with ANME-2a/2c contained two distinct phases of iron mineral chains resembling magnetosomes. 3D segmentation of two ANME-2 consortium types revealed cellular volumes of ANME and their symbiotic partners that were larger than previous estimates based on light microscopy. Polyphosphate-like granule-containing ANME (tentatively termed ANME-2b) were larger than both ANME with no granules and partner bacteria. This cell type was observed with up to 4 granules per cell, and the volume of the cell was larger in proportion to the number of granules inside it, but the percentage of the cell occupied by these granules did not vary with granule number. These results illuminate distinctions between ANME-2 archaeal lineages and partnering bacterial populations that are apparently unified in their ability to perform anaerobic methane oxidation.IMPORTANCEMethane oxidation in anaerobic environments can be accomplished by a number of archaeal groups, some of which live in syntrophic relationships with bacteria in structured consortia. Little is known of the distinguishing characteristics of these groups. Here, we applied imaging approaches to better understand the properties of these cells. We found unexpected morphological, structural, and volume variability of these uncultured groups by correlating fluorescence labeling of cells with electron microscopy observables.


Elements ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 389-394
Author(s):  
Esther M. Schwarzenbach ◽  
Matthew Steele-MacInnis

Seawater interaction with the oceanic lithosphere crucially impacts on global geochemical cycles, controls ocean chemistry over geologic time, changes the petrophysical properties of the oceanic lithosphere, and regulates the global heat budget. Extensive seawater circulation is expressed near oceanic ridges by the venting of hydrothermal fluids through chimney structures. These vent fluids vary greatly in chemistry, from the metal-rich, acidic fluids that emanate from “black smokers” at temperatures up to 400 °C to the metal-poor, highly alkaline and reducing fluids that issue from the carbonate–brucite chimneys of ultramafic-hosted systems at temperatures below 110 °C. Mid-ocean ridge hydrothermal systems not only generate signifi-cant metal resources but also host unique life forms that may be similar to those of early Earth.


2020 ◽  
Vol 6 (20) ◽  
pp. eaaz9776 ◽  
Author(s):  
Edyta Tabor ◽  
Jiri Dedecek ◽  
Kinga Mlekodaj ◽  
Zdenek Sobalik ◽  
Prokopis C. Andrikopoulos ◽  
...  

Activation of dioxygen attracts enormous attention due to its potential for utilization of methane and applications in other selective oxidation reactions. We report a cleavage of dioxygen at room temperature over distant binuclear Fe(II) species stabilized in an aluminosilicate matrix. A pair of formed distant α-oxygen species [i.e., (Fe(IV)═O)2+] exhibits unique oxidation properties reflected in an outstanding activity in the oxidation of methane to methanol at room temperature. Designing a man-made system that mimicks the enzyme functionality in the dioxygen activation using both a different mechanism and structure of the active site represents a breakthrough in catalysis. Our system has an enormous practical importance as a potential industrial catalyst for methane utilization because (i) the Fe(II)/Fe(IV) cycle is reversible, (ii) the active Fe centers are stable under the reaction conditions, and (iii) methanol can be released to gas phase without the necessity of water or water-organic medium extraction.


2002 ◽  
Vol 1 (4) ◽  
pp. 295-304 ◽  
Author(s):  
Lynn J. Rothschild ◽  
Lorraine J. Giver

The discovery of subsurface communities has encouraged speculation that such communities might be present on planetary bodies exposed to harsh surface conditions, including the early Earth. While the astrobiology community has focused on the deep subsurface, near-subsurface environments are unique in that they provide some protection while allowing partial access to photosynthetically active radiation. Previously we identified near-surface microbial communities based on photosynthesis. Here we assess the productivity of such an ecosystem by measuring in situ carbon fixation rates in an intertidal marine beach through a diurnal cycle, and find them surprisingly productive. Gross fixation along a transect (99×1 m) perpendicular to the shore was highly variable and depended on factors such as moisture and mat type, with a mean of ~41 mg C fixed m−2 day−1. In contrast, an adjacent well-established cyanobacterial mat dominated by Lyngbya aestuarii was ~12 times as productive (~500 mg C fixed m−2 day−1). Measurements made of the Lyngbya mat at several times per year revealed a correlation between total hours of daylight and gross daily production. From these data, annual gross fixation was estimated for the Lyngbya mat and yielded a value of ~1.3×105 g m−2 yr−1. An analysis of pulse-chase data obtained in the study in conjunction with published literature on similar ecosystems suggests that subsurface interstitial mats may be an overlooked endogenous source of organic carbon, mostly in the form of excreted fixed carbon.


Investigation of the kinetics of the oxidation of ethylene and of benzene showed that these reactions are peculiar in the following respects. First, the relation between the rate of reaction and concentration is such that the reactions possess no simple “order,” though the nearest integral value for the order is about the third of fourth. The rate increases very rapidly with increasing hydrocarbon concentration, but is relatively little influenced by oxygen; under some conditions oxygen may have a retarding influence. Secondly, the reactions can be slowed down by increasing the surface exposed to the gases. This indicates that the oxidation occurs by a chain mechanism. Thirdly, the rate of change of pressure accompanying the oxidation only attains its full value after an induction period, during which evidently intermediate products are accumulating. Accepting the fact that the oxidations are probably chain reactions, the relation between rate and concentration shown that the chains are much more easily propagated when the intermediate active molecules encounter more hydrocarbon than when they encounter oxygen. Following the view of Egerton, and consistently with previous work on the combination of hydrogen and oxygen, the working hypothesis adopted is that some intermediate peroxidised substance is responsible for the propagation of the chains. This being so, the question arises whether the peculiarities found in the oxidation of hydrocarbons will also be found with substances already containing oxygen. To investigate, therefore, the influence of chemical configuration on the mechanism of oxidation reactions the following series of compounds has been studied CH 4 CH 3 OH HCHO which represent the stages through which Bone and others have shown the oxidation of methane to occur.


2020 ◽  
Author(s):  
Kazumu Kaneko ◽  
Yasuhito Sekine ◽  
Takazo Shibuya ◽  
Hisahiro Ueda ◽  
Natsumi Noda

Sign in / Sign up

Export Citation Format

Share Document