scholarly journals On giant shoulders: How a seamount affects the microbial community composition of seawater and sponges

2020 ◽  
Author(s):  
Kathrin Busch ◽  
Ulrike Hanz ◽  
Furu Mienis ◽  
Benjamin Müller ◽  
Andre Franke ◽  
...  

Abstract. Seamounts represent ideal systems to study the influence and interdependency of environmental gradients at a single geographic location. These topographic features represent a prominent habitat for various forms of life, including microbiota and macrobiota, spanning benthic as well as pelagic organisms. While it is known that seamounts are globally abundant structures, it still remains unclear how and to which extend the complexity of the seafloor is intertwined with the local oceanographic mosaic, biogeochemistry and microbiology of a seamount ecosystem. Along these lines, the present study aimed to explore whether and to which extend seamounts can have an imprint on the microbial community composition of seawater and of sessile benthic invertebrates, sponges. For our high-resolution sampling approach of microbial diversity (16S rRNA gene Amplicon sequencing) along with measurements of inorganic nutrients and other biogeochemical parameters, we focused on the Schulz Bank seamount ecosystem, a sponge ground ecosystem which is located on the Arctic Mid-Ocean Ridge. Seawater samples were collected at two sampling depths (mid-water: MW, and near-bed water: BW) from a total of 19 sampling sites. With a clustering approach we defined microbial micro-habitats within the pelagic realm at Schulz Bank, which were mapped onto the seamount's topography, and related to various environmental parameters (such as suspended particulate matter (SPM), dissolved inorganic carbon (DIC), silicate (SiO4−), phosphate (PO43−), ammonia (NH4+), nitrate (NO32−), nitrite (NO2

2020 ◽  
Vol 17 (13) ◽  
pp. 3471-3486 ◽  
Author(s):  
Kathrin Busch ◽  
Ulrike Hanz ◽  
Furu Mienis ◽  
Benjamin Mueller ◽  
Andre Franke ◽  
...  

Abstract. Seamounts represent ideal systems to study the influence and interdependency of environmental gradients at a single geographic location. These topographic features represent a prominent habitat for various forms of life, including microbiota and macrobiota, spanning benthic as well as pelagic organisms. While it is known that seamounts are globally abundant structures, it still remains unclear how and to which extent the complexity of the sea floor is intertwined with the local oceanographic mosaic, biogeochemistry, and microbiology of a seamount ecosystem. Along these lines, the present study aimed to explore whether and to what extent seamounts can have an imprint on the microbial community composition of seawater and of sessile benthic invertebrates, sponges. For our high-resolution sampling approach of microbial diversity (16S rRNA gene amplicon sequencing) along with measurements of inorganic nutrients and other biogeochemical parameters, we focused on the Schulz Bank seamount ecosystem, a sponge ground ecosystem which is located on the Arctic Mid-Ocean Ridge. Seawater samples were collected at two sampling depths (mid-water, MW, and near-bed water, BW) from a total of 19 sampling sites. With a clustering approach we defined microbial microhabitats within the pelagic realm at Schulz Bank, which were mapped onto the seamount's topography and related to various environmental parameters (such as suspended particulate matter, SPM; dissolved inorganic carbon, DIC; silicate, SiO4-; phosphate, PO43-; ammonia, NH4+; nitrate, NO32-; nitrite, NO2-; depth; and dissolved oxygen, O2). The results of our study reveal a “seamount effect” (sensu stricto) on the microbial mid-water pelagic community at least 200 m above the sea floor. Further, we observed a strong spatial heterogeneity in the pelagic microbial landscape across the seamount, with planktonic microbial communities reflecting oscillatory and circulatory water movements, as well as processes of bentho-pelagic coupling. Depth, NO32-, SiO4-, and O2 concentrations differed significantly between the determined pelagic microbial clusters close to the sea floor (BW), suggesting that these parameters were presumably linked to changes in microbial community structures. Secondly, we assessed the associated microbial community compositions of three sponge species along a depth gradient of the seamount. While sponge-associated microbial communities were found to be mainly species-specific, we also detected significant intra-specific differences between individuals, depending on the pelagic near-bed cluster they originated from. The variable microbial phyla (i.e. phyla which showed significant differences across varying depth, NO32-, SiO4-, O2 concentrations, and different from local seawater communities) were distinct for every sponge species when considering average abundances per species. Variable microbial phyla included representatives of both those taxa traditionally counted for the variable community fraction and taxa counted traditionally for the core community fraction. Microbial co-occurrence patterns for the three examined sponge species Geodia hentscheli, Lissodendoryx complicata, and Schaudinnia rosea were distinct from each other. Over all, this study shows that topographic structures such as the Schulz Bank seamount can have an imprint (seamount effect sensu lato) on both the microbial community composition of seawater and sessile benthic invertebrates such as sponges by an interplay between the geology, physical oceanography, biogeochemistry, and microbiology of seamounts.


Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6172 ◽  
Author(s):  
Yun Kit Yeoh ◽  
Zigui Chen ◽  
Mamie Hui ◽  
Martin C.S. Wong ◽  
Wendy C.S. Ho ◽  
...  

Stools are commonly used as proxies for studying human gut microbial communities as sample collection is straightforward, cheap and non-invasive. In large-scale human population surveys, however, sample integrity becomes an issue as it is not logistically feasible for researchers to personally collect stools from every participant. Instead, participants are usually given guidelines on sample packaging and storage, and asked to deliver their stools to a centralised facility. Here, we tested a number of delivery conditions (temperature, duration and addition of preservative medium) and assessed their effects on stool microbial community composition using 16S rRNA gene amplicon sequencing. The largest source of variability in stool community composition was attributable to inter-individual differences regardless of delivery condition. Although the relative effect of delivery condition on community composition was small compared to inter-individual variability (1.6% vs. 60.5%, permutational multivariate analysis of variance [PERMANOVA]) and temporal variation within subjects over 10 weeks (5.2%), shifts in microbial taxa associated with delivery conditions were non-systematic and subject-specific. These findings indicated that it is not possible to model or accurately predict shifts in stool community composition associated with sampling logistics. Based on our findings, we recommend delivery of fresh, preservative-free stool samples to laboratories within 2 hr either at ambient or chilled temperatures to minimise perturbations to microbial community composition. In addition, subsamples from different fractions of the same stool displayed a small (3.3% vs. 72.6% inter-individual variation, PERMANOVA) but significant effect on community composition. Collection of larger sample volumes for homogenisation is recommended.


2019 ◽  
Vol 95 (12) ◽  
Author(s):  
Zachary S Cooper ◽  
Josephine Z Rapp ◽  
Shelly D Carpenter ◽  
Go Iwahana ◽  
Hajo Eicken ◽  
...  

ABSTRACT Hypersaline aqueous environments at subzero temperatures are known to be inhabited by microorganisms, yet information on community structure in subzero brines is very limited. Near Utqiaġvik, Alaska, we sampled subzero brines (–6°C, 115–140 ppt) from cryopegs, i.e. unfrozen sediments within permafrost that contain relic (late Pleistocene) seawater brine, as well as nearby sea-ice brines to examine microbial community composition and diversity using 16S rRNA gene amplicon sequencing. We also quantified the communities microscopically and assessed environmental parameters as possible determinants of community structure. The cryopeg brines harbored surprisingly dense bacterial communities (up to 108 cells mL–1) and millimolar levels of dissolved and particulate organic matter, extracellular polysaccharides and ammonia. Community composition and diversity differed between the two brine environments by alpha- and beta-diversity indices, with cryopeg brine communities appearing less diverse and dominated by one strain of the genus Marinobacter, also detected in other cold, hypersaline environments, including sea ice. The higher density and trend toward lower diversity in the cryopeg communities suggest that long-term stability and other features of a subzero brine are more important selective forces than in situ temperature or salinity, even when the latter are extreme.


2020 ◽  
Author(s):  
Tamara J.H.M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M.J. Ragas ◽  
Rosalie van Zelm ◽  
...  

AbstractPharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs) and biodegradation plays an important role in mitigating environmental risks, however a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biodegradation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC-MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing and kbvalues were calculated. The biodegradable pharmaceuticals, ranked from high to low biodegradation rates, were acetaminophen, metformin, metoprolol, terbutaline, and phenazone. Carbamazepine, diatrizoic acid, diclofenac and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kbfor some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum different kbvalues were measured, depending on initial concentration. In general, biodegradable compounds had a higher kbwhen the initial concentration was higher. This demonstrates that Michealis-Menten kinetics theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kbin order to reliably predict the fate of pharmaceuticals in the WWTP.


2017 ◽  
Author(s):  
Manuel Kleiner ◽  
Erin Thorson ◽  
Christine E. Sharp ◽  
Xiaoli Dong ◽  
Dan Liu ◽  
...  

AbstractAssessment of microbial community composition is the cornerstone of microbial ecology. Microbial community composition can be analyzed by quantifying cell numbers or by quantifying biomass for individual populations. However, as cell volumes can differ by orders of magnitude, these two approaches yield vastly different results. Methods for quantifying cell numbers are already available (e.g. fluorescence in situ hybridization, 16S rRNA gene amplicon sequencing), yet methods for assessing community composition in terms of biomass are lacking.We developed metaproteomics based methods for assessing microbial community composition using protein abundance as a measure for biomass contributions of individual populations. We optimized the accuracy and sensitivity of the method using artificially assembled microbial communities and found that it is less prone to some of the biases found in sequencing-based methods. We applied the method using communities from two different environments, microbial mats from two alkaline soda lakes and saliva from multiple individuals.


2021 ◽  
Author(s):  
Theodor Sperlea ◽  
Jan Philip Schenk ◽  
Hagen Dreßler ◽  
Daniela Beisser ◽  
Georges Hattab ◽  
...  

Microbes such as bacteria, archaea, and protists are essential for element cycling and ecosystem functioning, but many questions central to the understanding of the role of microbes in ecology are still open. Here, we analyze the relationship between lake microbiomes and the land cover surrounding the lakes. By applying machine learning methods, we quantify the covariance between land cover categories and the microbial community composition recorded in the largest amplicon sequencing dataset of European lakes available to date. We identify microbial bioindicators for these land cover categories. Combining land cover and physico-chemical bioindicators identified from the same amplicon sequencing dataset, we develop two novel similarity metrics that facilitate insights into the ecology of the lake microbiome. We show that the bioindicator network, i.e., the graph linking OTUs indicative of the same environmental parameters, corresponds to microbial co-occurrence patterns. Taken together, we demonstrate the strength of machine learning approaches to identify correlations between microbial diversity and environmental factors, potentially opening new approaches to integrate environmental molecular diversity into monitoring and water quality assessments.


Author(s):  
Derek S. Lundberg ◽  
Pratchaya Pramoj Na Ayutthaya ◽  
Annett Strauß ◽  
Gautam Shirsekar ◽  
Wen-Sui Lo ◽  
...  

AbstractThe ratio of microbial population size relative to the amount of host tissue, or “microbial load”, is a fundamental metric of colonization and infection, but it cannot be directly deduced from microbial amplicon data such as 16S rRNA gene counts. Because conventional methods to determine load, such as serial dilution plating or quantitative PCR, add substantial experimental burden, they are only rarely paired with amplicon sequencing. Alternatively, whole metagenome sequencing of DNA contributed by host and microbes both reveals microbial community composition and enables determination of microbial load, but host DNA typically greatly outweighs microbial DNA, severely limiting the cost-effectiveness and scalability of this approach. We introduce host-associated microbe PCR (hamPCR), a robust amplicon sequencing strategy to quantify microbial load and describe interkingdom microbial community composition in a single, cost-effective library. We demonstrate its accuracy and flexibility across multiple host and microbe systems, including nematodes and major crops. We further present a technique that can be used, prior to sequencing, to optimize the host representation in a batch of libraries without loss of information. Because of its simplicity, and the fact that it provides an experimental solution to the well-known statistical challenges provided by compositional data, hamPCR will become a transformative approach throughout culture-independent microbiology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raiza Hasrat ◽  
Jolanda Kool ◽  
Wouter A. A. de Steenhuijsen Piters ◽  
Mei Ling J. N. Chu ◽  
Sjoerd Kuiling ◽  
...  

AbstractThe low biomass of respiratory samples makes it difficult to accurately characterise the microbial community composition. PCR conditions and contaminating microbial DNA can alter the biological profile. The objective of this study was to benchmark the currently available laboratory protocols to accurately analyse the microbial community of low biomass samples. To study the effect of PCR conditions on the microbial community profile, we amplified the 16S rRNA gene of respiratory samples using various bacterial loads and different number of PCR cycles. Libraries were purified by gel electrophoresis or AMPure XP and sequenced by V2 or V3 MiSeq reagent kits by Illumina sequencing. The positive control was diluted in different solvents. PCR conditions had no significant influence on the microbial community profile of low biomass samples. Purification methods and MiSeq reagent kits provided nearly similar microbiota profiles (paired Bray–Curtis dissimilarity median: 0.03 and 0.05, respectively). While profiles of positive controls were significantly influenced by the type of dilution solvent, the theoretical profile of the Zymo mock was most accurately analysed when the Zymo mock was diluted in elution buffer (difference compared to the theoretical Zymo mock: 21.6% for elution buffer, 29.2% for Milli-Q, and 79.6% for DNA/RNA shield). Microbiota profiles of DNA blanks formed a distinct cluster compared to low biomass samples, demonstrating that low biomass samples can accurately be distinguished from DNA blanks. In summary, to accurately characterise the microbial community composition we recommend 1. amplification of the obtained microbial DNA with 30 PCR cycles, 2. purifying amplicon pools by two consecutive AMPure XP steps and 3. sequence the pooled amplicons by V3 MiSeq reagent kit. The benchmarked standardized laboratory workflow presented here ensures comparability of results within and between low biomass microbiome studies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Janneke Schreuder ◽  
Francisca C. Velkers ◽  
Alex Bossers ◽  
Ruth J. Bouwstra ◽  
Willem F. de Boer ◽  
...  

Associations between animal health and performance, and the host’s microbiota have been recently established. In poultry, changes in the intestinal microbiota have been linked to housing conditions and host development, but how the intestinal microbiota respond to environmental changes under farm conditions is less well understood. To gain insight into the microbial responses following a change in the host’s immediate environment, we monitored four indoor flocks of adult laying chickens three times over 16 weeks, during which two flocks were given access to an outdoor range, and two were kept indoors. To assess changes in the chickens’ microbiota over time, we collected cloacal swabs of 10 hens per flock and performed 16S rRNA gene amplicon sequencing. The poultry house (i.e., the stable in which flocks were housed) and sampling time explained 9.2 and 4.4% of the variation in the microbial community composition of the flocks, respectively. Remarkably, access to an outdoor range had no detectable effect on microbial community composition, the variability of microbiota among chickens of the same flock, or microbiota richness, but the microbiota of outdoor flocks became more even over time. Fluctuations in the composition of the microbiota over time within each poultry house were mainly driven by turnover in rare, rather than dominant, taxa and were unique for each flock. We identified 16 amplicon sequence variants that were differentially abundant over time between indoor and outdoor housed chickens, however none were consistently higher or lower across all chickens of one housing type over time. Our study shows that cloacal microbiota community composition in adult layers is stable following a sudden change in environment, and that temporal fluctuations are unique to each flock. By exploring microbiota of adult poultry flocks within commercial settings, our study sheds light on how the chickens’ immediate environment affects the microbiota composition.


Sign in / Sign up

Export Citation Format

Share Document