scholarly journals Ocean-related global change alters lipid biomarker production in common marine phytoplankton

2020 ◽  
Author(s):  
Rong Bi ◽  
Stefanie M. H. Ismar-Rebitz ◽  
Ulrich Sommer ◽  
Hailong Zhang ◽  
Meixun Zhao

Abstract. Global change concurrently alters multiple environmental factors, with uncertain consequences for marine ecosystems. Lipids, in their function as trophic markers in food webs and organic matter source indicators in water column and sediments, provide a tool for reconstructing the complexity of global change effects. It remains unclear how ongoing changes in multiple environmental drivers affect the production of key lipid biomarkers in marine phytoplankton. Here, we tested the responses of sterols, alkenones and fatty acids (FAs) in the diatom Phaeodactylum tricornutum, the cryptophyte Rhodomonas sp. and the haptophyte Emiliania huxleyi under a full-factorial combination of three temperatures (12, 18 and 24 °C), three N : P supply ratios (molar ratios 10 : 1, 24 : 1 and 63 : 1) and two pCO2 levels (560 and 2400 µatm) in semi-continuous culturing experiments. Overall, N and P deficiency had a stronger effect on per-cell contents of sterols, alkenones and FAs than warming and enhanced pCO2. Specifically, P deficiency caused an overall increase in biomarker production in most cases, while N deficiency, warming and high pCO2 caused non-systematic changes. Under future ocean scenarios, we predict an overall decrease in carbon-normalized contents of sterols and polyunsaturated fatty acids (PUFAs) in E. huxleyi and P. tricornutum, and a decrease in sterols but an increase in PUFAs in Rhodomonas sp. Variable contents of lipid biomarkers indicate a diverse carbon allocation between marine phytoplankton species in response to changing environments. Thus, it is necessary to consider the changes in key lipids and their consequences for food web dynamics and biogeochemical cycles, when predicting the influence of global change on marine ecosystems.

2020 ◽  
Vol 17 (24) ◽  
pp. 6287-6307
Author(s):  
Rong Bi ◽  
Stefanie M. H. Ismar-Rebitz ◽  
Ulrich Sommer ◽  
Hailong Zhang ◽  
Meixun Zhao

Abstract. Lipids, in their function as trophic markers in food webs and organic matter source indicators in the water column and sediments, provide a tool for reconstructing the complexity of global change effects on aquatic ecosystems. It remains unclear how ongoing changes in multiple environmental drivers affect the production of key lipid biomarkers in marine phytoplankton. Here, we tested the responses of sterols, alkenones and fatty acids (FAs) in the diatom Phaeodactylum tricornutum, the cryptophyte Rhodomonas sp. and the haptophyte Emiliania huxleyi under a full-factorial combination of three temperatures (12, 18 and 24 ∘C), three N : P supply ratios (molar ratios 10 : 1, 24 : 1 and 63 : 1) and two pCO2 levels (560 and 2400 µatm) in semicontinuous culturing experiments. Overall, N and P deficiency had a stronger effect on per-cell contents of sterols, alkenones and FAs than warming and enhanced pCO2. Specifically, P deficiency caused an overall increase in biomarker production in most cases, while N deficiency, warming and high pCO2 caused nonsystematic changes. Under future ocean scenarios, we predict an overall decrease in carbon-normalized contents of sterols and polyunsaturated fatty acids (PUFAs) in E. huxleyi and P. tricornutum and a decrease in sterols but an increase in PUFAs in Rhodomonas sp. Variable contents of lipid biomarkers indicate a diverse carbon allocation between marine phytoplankton species in response to changing environments. Thus, it is necessary to consider the changes in key lipids and their consequences for food-web dynamics and biogeochemical cycles, when predicting the influence of global change on marine ecosystems.


The Holocene ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 16-27
Author(s):  
Lilei Chen ◽  
Feng Li ◽  
Jian Liu ◽  
Xingliang He

The use of lipid biomarkers as paleoenvironmental proxies relies on an accurate assessment of their organic matter (OM) sources. In this study, we analyzed multiple lipids in core sediments recovered from the Zhejiang–Fujian coastal mud area to provide a 160-year record of OM input to the East China Sea (ECS) coastal sediments and to reconstruct paleoenvironmental conditions over this interval. The molecular composition of the samples was characterized by a mixture of natural lipids, particularly those derived from terrestrial vascular plants, marine/riverine plankton and macrophytes, and bacteria. The sources of some lipid components were ambiguous/mixed as they were potentially derived from multiple precursor organisms and because of limitations associated with modern survey techniques. There is evidence that early diagenesis caused the preferential degradation of labile aquatic lipids and that the degradation of terrestrial lipids was more severe when subjected to complex horizontal–vertical transportation processes associated with deposition, resuspension, and redeposition. These processes may have led to an enhanced terrestrial OM signal in the normal ( n)-alkane and n-alkanol records, which is at odds with, for example, those of the n-fatty acids, hopanoids, steranes, and sterols, which suggest a dominant marine OM source. Furthermore, we conclude that the occurrence of multiple sources, selective diagenesis, and test error has led to the distortion of redox and maturity indicators based on evidence from pristane-to-phytane (Pr/Ph) ratios and sterane/hopane indices in century scale. Overall, the phytol record suggests an increase in productivity after the early 20th century. Correspondingly, the diatom lipid biomarker records (based on C25 highly branched isoprenoid alkenes and C18:1ω9 fatty acids) reveal a fluctuating but overall increasing diatom productivity after the early 20th century, which coincides with a decreased proportion of the contribution from diatoms relative to that of total phytoplankton. This is believed to correspond to natural environmental changes, as well as anthropogenic impact.


2010 ◽  
Vol 7 (7) ◽  
pp. 2199-2202 ◽  
Author(s):  
S. Collins

Abstract. Populations can respond to environmental change over tens or hundreds of generations by shifts in phenotype that can be the result of a sustained physiological response, evolutionary (genetic) change, shifts in community composition, or some combination of these factors. Microbes evolve on human timescales, and evolution may contribute to marine phytoplankton responses to global change over the coming decades. However, it is still unknown whether evolutionary responses are likely to contribute significantly to phenotypic change in marine microbial communities under high pCO2 regimes or other aspects of global change. Recent work by Müller et al. (2010) highlights that long-term responses of marine microbes to global change must be empirically measured and the underlying cause of changes in phenotype explained. Here, I briefly discuss how tools from experimental microbial evolution may be used to detect and measure evolutionary responses in marine phytoplankton grown in high CO2 environments and other environments of interest. I outline why the particular biology of marine microbes makes conventional experimental evolution challenging right now and make a case that marine microbes are good candidates for the development of new model systems in experimental evolution. I suggest that "black box" frameworks that focus on partitioning phenotypic change, such as the Price equation, may be useful in cases where direct measurements of evolutionary responses alone are difficult, and that such approaches could be used to test hypotheses about the underlying causes of phenotypic shifts in marine microbe communities responding to global change.


2021 ◽  
Vol 7 (5) ◽  
pp. 333
Author(s):  
Lourdes Morillas ◽  
Javier Roales ◽  
Cristina Cruz ◽  
Silvana Munzi

Lichens are classified into different functional groups depending on their ecological and physiological response to a given environmental stressor. However, knowledge on lichen response to the synergistic effect of multiple environmental factors is extremely scarce, although vital to get a comprehensive understanding of the effects of global change. We exposed six lichen species belonging to different functional groups to the combined effects of two nitrogen (N) doses and direct sunlight involving both high temperatures and ultraviolet (UV) radiation for 58 days. Irrespective of their functional group, all species showed a homogenous response to N with cumulative, detrimental effects and an inability to recover following sunlight, UV exposure. Moreover, solar radiation made a tolerant species more prone to N pollution’s effects. Our results draw attention to the combined effects of global change and other environmental drivers on canopy defoliation and tree death, with consequences for the protection of ecosystems.


Author(s):  
Reilly M. Blocho ◽  
Richard W. Smith ◽  
Mark R. Noll

AbstractThe purpose of this study was to observe how the composition of organic matter (OM) and the extent of anoxia during deposition within the Marcellus Formation in New York varied by distance from the sediment source in eastern New York. Lipid biomarkers (n-alkanes and fatty acids) in the extractable organic component (bitumen) of the shale samples were analyzed, and proxies such as the average chain length (ACL), aquatic to terrestrial ratio (ATR) and carbon preference index (CPI) of n-alkanes were calculated. Fatty acids were relatively non-abundant due to the age of the shale bed, but n-alkane distributions revealed that the primary component of the OM was terrigenous plants. The presence of shorter n-alkane chain lengths in the samples indicated that there was also a minor component of phytoplankton and algal (marine) sourced OM. Whole rock analyses were also conducted, and cerium anomalies were calculated as a proxy for anoxia. All samples had a negative anomaly value, indicating anoxic conditions during deposition. Two samples, however, contained values close to zero and thus were determined to have suboxic conditions. Anoxia and total organic matter (TOM) did not show any spatial trends across the basin, which may be caused by varying depths within the basin during deposition. A correlation between nickel concentrations and TOM was observed and indicates that algae was the primary source of the marine OM, which supports the lipid biomarker analysis. It was determined that the kerogen type of the Marcellus Formation in New York State is type III, consistent with a methane-forming shale bed.


Author(s):  
Domenico D'Alelio ◽  
Salvatore Rampone ◽  
Luigi Maria Cusano ◽  
Nadia Sanseverino ◽  
Luca Russo ◽  
...  

2010 ◽  
Vol 7 (11) ◽  
pp. 3473-3489 ◽  
Author(s):  
J. Holtvoeth ◽  
H. Vogel ◽  
B. Wagner ◽  
G. A. Wolff

Abstract. Organic matter preserved in Lake Ohrid sediments originates from aquatic and terrestrial sources. Its variable composition reflects climate-controlled changes in the lake basin's hydrology and related organic matter export, i.e. changes in primary productivity, terrestrial plant matter input and soil erosion. Here, we present first results from lipid biomarker investigations of Lake Ohrid sediments from two near-shore settings: site Lz1120 near the southern shore, with low-lying lands nearby and probably influenced by river discharge, and site Co1202 which is close to the steep eastern slopes. Variable proportions of terrestrial n-alkanoic acids and n-alkanols as well as compositional changes of ω-hydroxy acids document differences in soil organic matter supply between the sites and during different climate stages (glacial, Holocene, 8.2 ka cooling event). Changes in the vegetation cover are suggested by changes in the dominant chain length of terrestrial n-alkanols. Effective microbial degradation of labile organic matter and in situ contribution of organic matter derived from the microbes themselves are both evident in the sediments. We found evidence for anoxic conditions within the photic zone by detecting epicholestanol and tetrahymanol from sulphur-oxidising phototrophic bacteria and bacterivorous ciliates and for the influence of a settled human community from the occurrence of coprostanol, a biomarker for human and animal faeces (pigs, sheep, goats), in an early Holocene sample. This study illustrates the potential of lipid biomarkers for future environmental reconstructions using one of Europe's oldest continental climate archives, Lake Ohrid.


Sign in / Sign up

Export Citation Format

Share Document