scholarly journals Vegetation modulates the impact of climate extremes on gross primary production

Author(s):  
Milan Flach ◽  
Alexander Brenning ◽  
Fabian Gans ◽  
Markus Reichstein ◽  
Sebastian Sippel ◽  
...  

Abstract. Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. Factors such as the duration, timing and intensity of extreme events influence the magnitude of impacts on ecosystem processes such as gross primary production (GPP), i.e. the ecosystem uptake of CO2. Preceding soil moisture depletion may exacerbate these impacts. However, some vegetation types may be more resilient to climate extremes than others. This effect is insufficiently understood at the global scale and is the focus of this study. Using a global upscaled product of GPP that scales up in-situ land CO2 flux observations with global satellite remote sensing, we study the impact of climate extremes at the global scale. We find that GPP in grasslands and agricultural areas is generally reduced during heat and drought events. However, we also find that forests, if considered globally, appear not in general to be particularly sensitive to droughts and heat events that occurred during the analyzed period or even show increased GPP values during these events. On the one hand, this is in many cases plausible, e.g. when no negative preconditioning has occurred. On the other hand, however, this may also reflect a lack of sensitivity in current remote sensing derived GPP products to the effects of droughts and heatwaves. The overall picture calls for a differentiated consideration of different land cover types in the assessments of risks of climate extremes for ecosystem functioning.

2021 ◽  
Vol 18 (1) ◽  
pp. 39-53
Author(s):  
Milan Flach ◽  
Alexander Brenning ◽  
Fabian Gans ◽  
Markus Reichstein ◽  
Sebastian Sippel ◽  
...  

Abstract. Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. Factors such as the duration, timing, and intensity of extreme events influence the magnitude of impacts on ecosystem processes such as gross primary production (GPP), i.e., the ecosystem uptake of CO2. Preceding soil moisture depletion may exacerbate these impacts. However, some vegetation types may be more resilient to climate extremes than others. This effect is insufficiently understood at the global scale and is the focus of this study. Using a global upscaled product of GPP that scales up in situ land CO2 flux observations with global satellite remote sensing, we study the impact of climate extremes at the global scale. We find that GPP in grasslands and agricultural areas is generally reduced during heat and drought events. However, we also find that forests, if considered globally, appear in general to not be particularly sensitive to droughts and heat events that occurred during the analyzed period or even show increased GPP values during these events. On the one hand, normal-to-increased GPP values are in many cases plausible, e.g., when conditions prior to the event have been particularly positive. On the other hand, however, normal-to-increased GPP values in forests may also reflect a lack of sensitivity in current remote-sensing-derived GPP products to the effects of droughts and heatwaves. The overall picture calls for a differentiated consideration of different land cover types in the assessments of risks of climate extremes for ecosystem functioning.


2014 ◽  
Vol 11 (1) ◽  
pp. 1869-1907 ◽  
Author(s):  
J. Zscheischler ◽  
M. D. Mahecha ◽  
S. Harmeling ◽  
A. Rammig ◽  
E. Tomelleri ◽  
...  

Abstract. Climate extremes can affect the functioning of terrestrial ecosystems, for instance via a reduction of the photosynthetic capacity or alterations of respiratory processes. Yet the dominant regional and seasonal effects of hydrometeorological extremes are still not well documented. Here we quantify and characterize the role of large spatiotemporal extreme events in gross primary production (GPP) as triggers of continental anomalies. We also investigate seasonal dynamics of extreme impacts on continental GPP anomalies. We find that the 50 largest positive (increase in uptake) and negative extremes (decrease in uptake) on each continent can explain most of the continental variation in GPP, which is in line with previous results obtained at the global scale. We show that negative extremes are larger than positive ones and demonstrate that this asymmetry is particularly strong in South America and Europe. Most extremes in GPP start in early summer. Our analysis indicates that the overall impacts and the spatial extents of GPP extremes are power law distributed with exponents that vary little across continents. Moreover, we show that on all continents and for all data sets the spatial extents play a more important role than durations or maximal GPP anomaly when it comes to the overall impact of GPP extremes. An analysis of possible causes implies that across continents most extremes in GPP can best be explained by water scarcity rather than by extreme temperatures. However, for Europe, South America and Oceania we identify also fire as an important driver. Our findings are consistent with remote sensing products. An independent validation against a literature survey on specific extreme events supports our results to a large extent.


2014 ◽  
Vol 11 (11) ◽  
pp. 2909-2924 ◽  
Author(s):  
J. Zscheischler ◽  
M. Reichstein ◽  
S. Harmeling ◽  
A. Rammig ◽  
E. Tomelleri ◽  
...  

Abstract. Climate extremes can affect the functioning of terrestrial ecosystems, for instance via a reduction of the photosynthetic capacity or alterations of respiratory processes. Yet the dominant regional and seasonal effects of hydrometeorological extremes are still not well documented and in the focus of this paper. Specifically, we quantify and characterize the role of large spatiotemporal extreme events in gross primary production (GPP) as triggers of continental anomalies. We also investigate seasonal dynamics of extreme impacts on continental GPP anomalies. We find that the 50 largest positive extremes (i.e., statistically unusual increases in carbon uptake rates) and negative extremes (i.e., statistically unusual decreases in carbon uptake rates) on each continent can explain most of the continental variation in GPP, which is in line with previous results obtained at the global scale. We show that negative extremes are larger than positive ones and demonstrate that this asymmetry is particularly strong in South America and Europe. Our analysis indicates that the overall impacts and the spatial extents of GPP extremes are power-law distributed with exponents that vary little across continents. Moreover, we show that on all continents and for all data sets the spatial extents play a more important role for the overall impact of GPP extremes compared to the durations or maximal GPP. An analysis of possible causes across continents indicates that most negative extremes in GPP can be attributed clearly to water scarcity, whereas extreme temperatures play a secondary role. However, for Europe, South America and Oceania we also identify fire as an important driver. Our findings are consistent with remote sensing products. An independent validation against a literature survey on specific extreme events supports our results to a large extent.


2018 ◽  
Vol 10 (9) ◽  
pp. 1329 ◽  
Author(s):  
Shangrong Lin ◽  
Jing Li ◽  
Qinhuo Liu ◽  
Alfredo Huete ◽  
Longhui Li

Gross primary production (GPP) in forests is the most important carbon flux in terrestrial ecosystems. Forest ecosystems with high leaf area index (LAI) values have diverse species or complex forest structures with vertical stratifications that influence the carbon–water–energy cycles. In this study, we used three light use efficiency (LUE) GPP models and site-level experiment data to analyze the effects of the vertical stratification of dense forest vegetation on the estimates of remotely sensed GPP during the growing season of two forest sites in East Asia: Dinghushan (DHS) and Tomakomai (TMK). The results showed that different controlling environmental factors of the vertical layers, such as temperature and vapor pressure deficit (VPD), produce different responses for the same LUE value in the different sub-ecosystems (defined as the tree, shrub, and grass layers), which influences the GPP estimation. Air temperature and VPD play important roles in the effects of vertical stratification on the GPP estimates in dense forests, which led to differences in GPP uncertainties from −50% to 30% because of the distinct temperature responses in TMK. The unequal vertical LAI distributions in the different sub-ecosystems led to GPP variations of 1–2 gC/m2/day with uncertainties of approximately −30% to 20% because sub-ecosystems have unique absorbed fractions of photosynthetically active radiation (APAR) and LUE. A comparison with the flux tower-based GPP data indicated that the GPP estimations from the LUE and APAR values from separate vertical layers exhibited better model performance than those calculated using the single-layer method, with 10% less bias in DHS and more than 70% less bias in TMK. The precision of the estimated GPP in regions with thick understory vegetation could be effectively improved by considering the vertical variations in environmental parameters and the LAI values of different sub-ecosystems as separate factors when calculating the GPP of different components. Our results provide useful insight that can be used to improve the accuracy of remote sensing GPP estimations by considering vertical stratification parameters along with the LAI of sub-ecosystems in dense forests.


2021 ◽  
Vol 13 (12) ◽  
pp. 2363
Author(s):  
Xiangfen Cheng ◽  
Yu Zhou ◽  
Meijun Hu ◽  
Feng Wang ◽  
Hui Huang ◽  
...  

Solar-induced chlorophyll fluorescence (SIF) is a hopeful indicator, which along with remote sensing, is used to measure the photosynthetic efficiency and gross primary production (GPP) of vegetation in regional terrestrial ecosystems. Studies have found a significant linear correlation between SIF and GPP in a variety of ecosystems. However, this relationship has mainly been established using SIF and GPP data derived from satellite remote sensing and continuous ground-based observations, respectively, which are difficult to accurately match. To overcome this, some studies have begun to use tower-based automatic observation instruments to study the changes of near-surface SIF and GPP. This study conducts continuous simultaneous observation of SIF, carbon flux, and meteorological factors on the forest canopy of a cork oak plantation during the growing season to explore how meteorological factors impact on canopy SIF and its relationship with GPP. This research found that the canopy SIF has obvious diurnal and day-to-day variations during the growing season but overall is relatively stable. Furthermore, SIF is greatly affected by incident radiation in different weather conditions and can change daily. Meteorological factors have a major role in the relationship between SIF and GPP; overall, the relationship shows a significant linear regression on the 30 min scale, but weakens when aggregating to the diurnal scale. Photosynthetically active radiation (PAR) drives SIF on a daily basis and changes the relationship between SIF and GPP on a seasonal timescale. As PAR increases, the daily slopes of the linear regressions between SIF and GPP decrease. On the 30 min timescale, both SIF and GPP increase with PAR until it reaches 1250 μmol·m−2·s−1; subsequently, SIF continues to increase while GPP decreases and they show opposite trends. Soil moisture and vapor pressure deficit influence SIF and GPP, respectively. Our findings demonstrate that meteorological factors affect the relationship between SIF and GPP, thereby enhancing the understanding of the mechanistic link between chlorophyll fluorescence and photosynthesis.


2020 ◽  
Author(s):  
Dominik L. Schumacher ◽  
Jessica Keune ◽  
Diego G. Miralles

<p>Terrestrial ecosystems play a key role in climate by dampening the increasing atmospheric CO<sub>2</sub> concentrations primarily caused by anthropogenic fossil fuel emissions. The capability of the land biosphere to act as a carbon sink largely depends on climate conditions, which determine the energy and water availability required by plants to grow. Even though only a small part of the global land area is covered by vegetation, the impact of extreme dry and wet seasons has been shown to largely drive the global interannual variability of gross primary production. The climate in a certain area can be seen as the balance of different heat and moisture fluxes: local surface–atmosphere fluxes from below, entrainment of heat and moisture from aloft, and ‘horizontal’ advection of heat and moisture from upwind regions. The latter provides a mechanism for remote regions to impact gross primary production downwind, and has received less scientific attention. Here, advection is inferred from a bird’s eye perspective, focussing on the five ecoregions with the largest interannual variability in peak productivity around the globe. Employing the atmospheric Lagrangian trajectory model FLEXPART, driven by ERA-Interim reanalysis data, we track the air residing over ecoregions back in time to deduce the origins of heat and moisture that affect ecosystem gross primary production. Utilizing the evaporative source regions supplying water for precipitation to these ecosystems, as well as the analogous source regions of advected heat, we estimate the contribution of advection to gross primary production. Our findings show that source regions of heat and moisture are not congruent: upwind land surfaces typically supply most of the advected heat, whereas upwind oceans tend to provide more moisture. Moreover, low gross primary production in heat-stressed and water-limited ecosystems is often accompanied by enhanced heat and reduced moisture advection from land regions, exacerbated by upwind land–atmosphere feedbacks. These results demonstrate that anomalies in atmospheric advection can cause ecosystem productivity extremes. Particularly in light of ongoing climate change, we emphasize the potentially detrimental effects of upwind areas that may cause long-lasting impacts on the terrestrial carbon budget, thereby further affecting the climate.</p>


2012 ◽  
Vol 25 (15) ◽  
pp. 5327-5342 ◽  
Author(s):  
Jiafu Mao ◽  
Peter E. Thornton ◽  
Xiaoying Shi ◽  
Maosheng Zhao ◽  
Wilfred M. Post

Abstract Remote sensing can provide long-term and large-scale products helpful for ecosystem model evaluation. The authors compare monthly gross primary production (GPP) simulated by the Community Land Model, version 4 (CLM4) at a half-degree resolution with satellite estimates of GPP from the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product (MOD17) for the 10-yr period January 2000–December 2009. The assessment is presented in terms of long-term mean carbon assimilation, seasonal mean distributions, amplitude and phase of the annual cycle, and intraannual and interannual GPP variability and their responses to climate variables. For the long-term annual and seasonal means, major GPP patterns are clearly demonstrated by both products. Compared to the MODIS product, CLM4 overestimates the magnitude of GPP for tropical evergreen forests. CLM4 has a longer carbon uptake period than MODIS for most plant functional types (PFTs) with an earlier onset of GPP in spring and a later decline of GPP in autumn. Empirical orthogonal function analysis of the monthly GPP changes indicates that, on the intraannual scale, both CLM4 and MODIS display similar spatial representations and temporal patterns for most terrestrial ecosystems except in northeast Russia and in the very dry region of central Australia. For 2000–09, CLM4 simulated increases in annual averaged GPP over both hemispheres; however, estimates from MODIS suggest a reduction in the Southern Hemisphere (−0.2173 PgC yr−1), balancing the significant increase over the Northern Hemisphere (0.2157 PgC yr−1). The evaluations highlight strengths and weaknesses of the CLM4 primary production and illuminate potential improvements and developments.


2020 ◽  
Author(s):  
Milan Flach ◽  
Alexander Brenning ◽  
Fabian Gans ◽  
Markus Reichstein ◽  
Sebastian Sippel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document