scholarly journals Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi

2021 ◽  
Author(s):  
Melanie S. Verlinden ◽  
Hamada AbdElgawad ◽  
Arne Ven ◽  
Lore T. Verryckt ◽  
Sebastian Wieneke ◽  
...  

Abstract. Despite being an essential macronutrient for plant growth, phosphorus (P) is one of the least available nutrients in soils and P limitation is often a major constraint for plant growth globally. Although P addition experiments have been carried out to study the long-term effects on the yield, data on P addition effects to seasonal variation in leaf-level photosynthesis are scarce. Arbuscular mycorrhizal fungi (AMF) can be of major importance for plant nutrient uptake, and AMF growth may be important for explaining temporal patterns in leaf physiology. In a nitrogen (N) and P fertilization experiment with Zea mays, we investigated the effect of P limitation on leaf pigments and leaf enzymes, how these relate to leaf-level photosynthesis, and how these relationships change during the growing season. Previous research indicated that N addition did not affect plant growth and also the leaf measurements in the current study were unaffected by N addition. Contrary to N addition, P addition strongly influenced plant growth and leaf-level measurements. At low soil P availability, leaf-level photosynthetic and respiratory activity were strongly decreased and this was associated with reduced chlorophyll and photosynthetic enzymes. Contrary to the expected increase in P stress over time following gradual soil P depletion, plant P-limitation decreased over time. For most leaf-level processes, pigments and enzymes under study, the fertilization effect had even disappeared two months after planting. Our results point towards a key role for the AMF-symbiosis and consequent increase of P uptake in explaining the vanishing P stress.

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1068
Author(s):  
Meihua Liu ◽  
Yaoxiong Wang ◽  
Quan Li ◽  
Wenfa Xiao ◽  
Xinzhang Song

Phosphorus (P) deficiency in soil affects plant growth and primary production. Accelerated nitrogen (N) deposition can cause ecological carbon:nitrogen:phosphorus (C:N:P) stoichiometry imbalance and increase the degree of relative P deficiency in the soil. However, it remains unclear how N deposition affects P uptake and C:N:P stoichiometry in coniferous timber forests, and whether P addition diminishes the effect of N-induced P limitation on plant growth. From January 2017 to April 2018, we investigated the effects of nine different N and P addition treatments on 10-year old trees of Chinese fir, Cunninghamia lanceolata (Lamb.) Hook. Our results demonstrated that N and P additions at a high concentration could improve the photosynthetic capacity in Chinese fir by increasing the chlorophyll content and stimulating the photosynthesis activity. The C:N:P stoichiometry varied with the season under different N and P addition treatments, indicating that N addition at a moderate concentration could diminish the effect of the P limitation on the growth of Chinese fir. The soluble sugar content in the leaves displayed more stable seasonal variations, compared with those of starch. However, the non-structural carbohydrate (NSC) content in the leaves did not vary with the season under both P and N addition treatment. The data suggested that N and P combination treatment at moderate concentrations promoted carbon assimilation by accelerating the photosynthetic rate. Thus, our results provide new insights into the adaptation mechanisms of coniferous timber forest ecosystems to the effects of N deposition under P deficiency and can help to estimate the ecological effects of environmental changes linked to human management practices.


2021 ◽  
Vol 63 (9) ◽  
pp. 44-47
Author(s):  
Vu Phong Nguyen ◽  
◽  
Trung Nguyen Vu ◽  
Kien Tran ◽  
Thi Truc Mai Ha ◽  
...  

Mycorrhiza was considered to enhance plant growth, especially in unfavourable environmental conditions. From 60 samples of rhizospheric soils and roots of black pepper (Piper nigrum) grown in Ba Ria - Vung Tau, Dong Nai, and Gia Lai provinces, the presence of Acaulospora, Gigaspora, Glomite, Glomus,and Scutellospora genera were detected, of which Glomus and Acaulospora were dominants. After 40 days of inoculation, mycorrhiza multiplied 8.5 fold on corn (Zea mays) and 6.5 fold on sorghum (Sorghum bicolor) or goosegrass (Eleusine indica). Black-pepper cuttings on substrate supplemented mycorrhiza showed better growth than the non-inoculated cuttings. Results suggest the potential of applying mycorrhizal fungi as biological agents in sustainable black pepper cultivation, adapting to climate change


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1531
Author(s):  
Narcisa Urgiles-Gómez ◽  
María Eugenia Avila-Salem ◽  
Paúl Loján ◽  
Max Encalada ◽  
Leslye Hurtado ◽  
...  

Coffee is an important, high-value crop because its roasted beans are used to produce popular beverages that are consumed worldwide. Coffee plantations exist in over 70 countries and constitute the main economic activity of approximately 125 million people. Currently, there is global concern regarding the excessive use of agrochemicals and pesticides in agriculture, including coffee crops. This situation has motivated researchers, administrators, and farmers to seek ecologically friendly alternatives to decrease the use of synthetic fertilizers and pesticides. In the last decades, multiple studies of the rhizosphere, at the chemical, physical and biological levels, have improved our understanding of the importance of beneficial microorganisms to plant health and growth. This review aims to summarize the state of the use of plant growth-promoting microorganisms (PGPM) in coffee production, where the most extensively studied microorganisms are beneficial plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This review also contains information on PGPM, in regard to plantations at different latitudes, isolation techniques, mass multiplication, formulation methods, and the application of PGPM in nurseries, monoculture, and coffee agroforestry systems. Finally, this review focuses on relevant research performed during the last decade that can help us improve sustainable coffee production.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2021 ◽  
Vol 134 ◽  
pp. 187-196
Author(s):  
M.J. Salomon ◽  
S.J. Watts-Williams ◽  
M.J. McLaughlin ◽  
C.J. Brien ◽  
N. Jewell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document