scholarly journals Photosynthesis, Ecological Stoichiometry, and Non-Structural Carbohydrate Response to Simulated Nitrogen Deposition and Phosphorus Addition in Chinese Fir Forests

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1068
Author(s):  
Meihua Liu ◽  
Yaoxiong Wang ◽  
Quan Li ◽  
Wenfa Xiao ◽  
Xinzhang Song

Phosphorus (P) deficiency in soil affects plant growth and primary production. Accelerated nitrogen (N) deposition can cause ecological carbon:nitrogen:phosphorus (C:N:P) stoichiometry imbalance and increase the degree of relative P deficiency in the soil. However, it remains unclear how N deposition affects P uptake and C:N:P stoichiometry in coniferous timber forests, and whether P addition diminishes the effect of N-induced P limitation on plant growth. From January 2017 to April 2018, we investigated the effects of nine different N and P addition treatments on 10-year old trees of Chinese fir, Cunninghamia lanceolata (Lamb.) Hook. Our results demonstrated that N and P additions at a high concentration could improve the photosynthetic capacity in Chinese fir by increasing the chlorophyll content and stimulating the photosynthesis activity. The C:N:P stoichiometry varied with the season under different N and P addition treatments, indicating that N addition at a moderate concentration could diminish the effect of the P limitation on the growth of Chinese fir. The soluble sugar content in the leaves displayed more stable seasonal variations, compared with those of starch. However, the non-structural carbohydrate (NSC) content in the leaves did not vary with the season under both P and N addition treatment. The data suggested that N and P combination treatment at moderate concentrations promoted carbon assimilation by accelerating the photosynthetic rate. Thus, our results provide new insights into the adaptation mechanisms of coniferous timber forest ecosystems to the effects of N deposition under P deficiency and can help to estimate the ecological effects of environmental changes linked to human management practices.

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 155 ◽  
Author(s):  
Fangchao Wang ◽  
Fusheng Chen ◽  
G. Wang ◽  
Rong Mao ◽  
Xiangmin Fang ◽  
...  

Research Highlights: This study identifies the nitrogen (N) deposition effect on understory plants by altering directly soil nutrients or indirectly altering environmental factors in subtropical plantation. Background and Objectives: N deposition is a major environmental issue and has altered forest ecosystem components and their functions. The response of understory vegetation to N deposition is often neglected due to a small proportion of stand productivity. However, compared to overstory trees, understory species usually have a higher nutrient cycle rate and are more sensitive to environmental change, so should be of greater concern. Materials and Methods: The changes in plant biomass, N, phosphorus (P), and nonstructural carbohydrates (NSCs) of three dominant understory species, namely Dicranopteris dichotoma, Lophatherum gracile, and Melastoma dodecandrum, were determined following four years of experimental N addition (100 kg hm−2 year−1 of N) in a Chinese fir plantation. Results: N addition increased the tissue N concentrations of all the understory plants by increasing soil mineral N, while N addition decreased the aboveground biomass of D. dichotoma and L. gracile significantly—by 82.1% and 67.2%, respectively. The biomass of M. dodecandrum did not respond to N addition. In contrast, N addition significantly increased the average girth growth rates and litterfall productivity of overstory trees—by 18.28% and 36.71%, respectively. NSCs, especially soluble sugar, representing immediate products of photosynthesis and main energy sources for plant growth, decreased after N addition in two of the three species. The plant NSC/N and NSC/P ratios showed decreasing tendencies, but the N/P ratio in aboveground tissue did not change with N addition. Conclusions: N addition might inhibit the growth of understory plants by decreasing the nonstructural carbohydrates and light availability indirectly rather than by changing nutrients and N/P stoichiometry directly, although species-specific responses to N deposition occurred in the Chinese fir plantation.


2011 ◽  
Vol 8 (9) ◽  
pp. 2805-2813 ◽  
Author(s):  
T. Zhang ◽  
W. Zhu ◽  
J. Mo ◽  
L. Liu ◽  
S. Dong

Abstract. It is well established that tropical forest ecosystems are often limited by phosphorus (P) availability, and elevated atmospheric nitrogen (N) deposition may further enhance such P limitation. However, it is uncertain whether P availability would affect soil fluxes of greenhouse gases, such as methane (CH4) uptake, and how P interacts with N deposition. We examine the effects of N and P additions on soil CH4 uptake in an N saturated old-growth tropical forest in southern China to test the following hypotheses: (1) P addition would increase CH4 uptake; (2) N addition would decrease CH4 uptake; and (3) P addition would mitigate the inhibitive effect of N addition on soil CH4 uptake. Four treatments were conducted at the following levels from February 2007 to October 2009: control, N-addition (150 kg N ha−1 yr−1), P-addition (150 kg P ha−1 yr−1), and NP-addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). Static chamber and gas chromatography techniques were used to quantify soil CH4 uptake every month throughout the study period. Average CH4 uptake rate was 31.2 ± 1.1 μg CH4-C m−2 h−1 in the control plots. The mean CH4 uptake rate in the N-addition plots was 23.6 ± 0.9 μg CH4-C m−2 h−1, significantly lower than that in the controls. P-addition however, significantly increased CH4 uptake by 24% (38.8 ± 1.3 μg CH4-C m−2 h−1), whereas NP-addition (33.6 ± 1.0 μg CH4-C m−2 h−1) was not statistically different from the control. Our results suggest that increased P availability may enhance soil mathanotrophic activity and root growth, resulting in potentially mitigating the inhibitive effect of N deposition on CH4 uptake in tropical forests.


2021 ◽  
Author(s):  
Melanie S. Verlinden ◽  
Hamada AbdElgawad ◽  
Arne Ven ◽  
Lore T. Verryckt ◽  
Sebastian Wieneke ◽  
...  

Abstract. Despite being an essential macronutrient for plant growth, phosphorus (P) is one of the least available nutrients in soils and P limitation is often a major constraint for plant growth globally. Although P addition experiments have been carried out to study the long-term effects on the yield, data on P addition effects to seasonal variation in leaf-level photosynthesis are scarce. Arbuscular mycorrhizal fungi (AMF) can be of major importance for plant nutrient uptake, and AMF growth may be important for explaining temporal patterns in leaf physiology. In a nitrogen (N) and P fertilization experiment with Zea mays, we investigated the effect of P limitation on leaf pigments and leaf enzymes, how these relate to leaf-level photosynthesis, and how these relationships change during the growing season. Previous research indicated that N addition did not affect plant growth and also the leaf measurements in the current study were unaffected by N addition. Contrary to N addition, P addition strongly influenced plant growth and leaf-level measurements. At low soil P availability, leaf-level photosynthetic and respiratory activity were strongly decreased and this was associated with reduced chlorophyll and photosynthetic enzymes. Contrary to the expected increase in P stress over time following gradual soil P depletion, plant P-limitation decreased over time. For most leaf-level processes, pigments and enzymes under study, the fertilization effect had even disappeared two months after planting. Our results point towards a key role for the AMF-symbiosis and consequent increase of P uptake in explaining the vanishing P stress.


2016 ◽  
Vol 13 (11) ◽  
pp. 3503-3517 ◽  
Author(s):  
Mianhai Zheng ◽  
Tao Zhang ◽  
Lei Liu ◽  
Weixing Zhu ◽  
Wei Zhang ◽  
...  

Abstract. Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-growth forest and two N-limited younger forests (a mixed and a pine forest) in southern China to test the following hypotheses: (1) soil N2O emission is the highest in old-growth forest due to the N-rich soil; (2) N addition increases N2O emission more in the old-growth forest than in the two younger forests; (3) P addition decreases N2O emission more in the old-growth forest than in the two younger forests; and (4) P addition alleviates the stimulation of N2O emission by N addition. The following four treatments were established in each forest: Control, N addition (150 kg N ha−1 yr−1), P addition (150 kg P ha−1 yr−1), and NP addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). From February 2007 to October 2009, monthly quantification of soil N2O emission was performed using static chamber and gas chromatography techniques. Mean N2O emission was shown to be significantly higher in the old-growth forest (13.9 ± 0.7 µg N2O-N m−2 h−1) than in the mixed (9.9 ± 0.4 µg N2O-N m−2 h−1) or pine (10.8 ± 0.5 µg N2O-N m−2 h−1) forests, with no significant difference between the latter two. N addition significantly increased N2O emission in the old-growth forest but not in the two younger forests. However, both P and NP addition had no significant effect on N2O emission in all three forests, suggesting that P addition alleviated the stimulation of N2O emission by N addition in the old-growth forest. Although P fertilization may alleviate the stimulated effects of atmospheric N deposition on N2O emission in N-rich forests, this effect may only occur under high N deposition and/or long-term P addition, and we suggest future investigations to definitively assess this management strategy and the importance of P in regulating N cycles from regional to global scales.


2021 ◽  
Author(s):  
Christopher Taylor ◽  
Victoria Janes-Bassett ◽  
Gareth Phoenix ◽  
Ben Keane ◽  
Iain Hartley ◽  
...  

<p>In ecosystems where nitrogen (N) limits plant productivity, N deposition can stimulate plant growth, and consequently, promote carbon (C) sequestration by increasing input of detrital C and other forms of plant C to the soil. However, other forms of nutrient limitation such as phosphorus (P) limitation and N-P co-limitation are widespread and may increase in prevalence with N deposition. Our understanding of how terrestrial ecosystem C, N and P cycling may be affected by N deposition when N is not the sole limiting resource is fairly limited. In this work, we investigate the consequences of enhanced N addition on C, N and P cycling in grasslands that exhibit contrasting forms of nutrient limitation.</p><p>We do so by collecting data from a long-term nutrient manipulation experiment on two N-P co-limited grasslands; an acidic grassland of stronger N-limitation and a calcareous grassland of stronger P limitation, and integrating this into a mechanistic C, N and P cycling model (N14CP). To simulate the experimental grasslands and explore the role of P access mechanisms in determining ecosystem state, we allowed P access to vary, and compared the outputs to plant-soil C, N and P data. Combinations of organic P access and inorganic P availability most closely representing data were used to simulate the grasslands and quantify their temporal response to nutrient manipulation.</p><p>The modelled grasslands showed contrasting responses to simulated N deposition. In the acidic grassland, N addition greatly increased C stocks by stimulating biomass productivity, but the same N treatments reduced the organic C pool in the calcareous grassland. Nitrogen deposition exacerbated P limitation in the calcareous grassland by reducing the size of the bioavailable P pool to plants, reducing biomass input to the soil C pool. Plant acquisition of organic P played an important role in determining the nutrient conditions of the grasslands, as both simulated grasslands increased organic P uptake to meet enhanced P demand driven by N deposition. Greater access to organic P in the acidic grassland prevented a shift to P limitation under elevated levels of N deposition, but organic P access was too low in the calcareous grassland to prevent worsening P limitation.</p><p>We conclude that grasslands of differing limiting nutrients may respond to N deposition in contrasting ways, and stress that as N deposition shifts ecosystems toward P limitation, a globally important carbon sink risks degradation.</p>


2020 ◽  
Vol 8 (11) ◽  
pp. 1828 ◽  
Author(s):  
Zongwei Xia ◽  
Jingyi Yang ◽  
Changpeng Sang ◽  
Xu Wang ◽  
Lifei Sun ◽  
...  

Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO3− contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.


2020 ◽  
Author(s):  
Haiying Cui ◽  
Manuel Delgado-Baquerizo ◽  
Wei Sun ◽  
Jian-Ying Ma ◽  
Wenzheng Song ◽  
...  

<p>Plant phosphorus (P) resorption, mutualistic symbiosis with mycorrhizas, such as arbuscular mycorrhizal fungi (AMF) and soil organic P mineralization are crucial strategies for acquiring sufficient P to meet plant nutrient demand. Which is the main strategy, however, responding to elevated nitrogen (N) addition to alleviate P deficiency caused by N enrichment remains unclear in terrestrial ecosystems. We explored the responses of foliar P resorption of dominate species (Leymus chinensis), soil microbial properties and organic P mineralization to multi-level N addition in a temperate meadow steppe, Northeast China. We found the enhancements in plant biomass, microbial biomass C and N (MBC, MBN), alkaline phosphatase activities (ALP), and phoD gene abundance (main gene coded soil ALP), while the reductions in soil pH, available P, microbial biomass P, and AMF abundance, and no significant responses of foliar P content under simulative N deposition. When the rates exceeded the threshold 10 g N m<sup>-2</sup>yr<sup>-1</sup>, plants and microbes had little additional responses to N enrichment. Notably, N addition had distinct effects on three plant P acquisition strategies, that no conspicuous increase in P resorption efficiency, reduced dependence on mutualistic with AMF symbiosis and accelerated organic P mineralization. A positive correlation between ALP activity, phoD gene abundance and P mineralization rate suggested increases in phosphatase activities and its functional gene copies play crucial roles in organic P mineralization. Nitrogen addition aggravated P deficiency to the production of plant and microbial biomass, which further accelerated soil organic P mineralization and foliar P resorption. Due to lack of plasticity in P resorption efficiency and reduced dependence on mutualistic with AMF symbiosis, however, the organic P mineralization dominated in P acquisition to meet increased P demand. Furthermore, the increase in ALP activities, activation of phoD genes and decrease in soil pH were the main pathways to accelerate organic P mineralization and consequently alleviated P deficiency caused by anthropogenic N deposition, especially at conditions of N saturation. Our results provide strong evidences that N addition can accelerate the rate of P cycling and mobilize plant P uptake strategies such as soil organic P mineralization and leaf P resorption, which are important to better maintain sustainable ecosystem development in the more fertilized word.</p><p>Acknowledgments: This work was supported by the National Key Research and Development Program of China (2016YFC0500602), National Natural Science Foundation of China (31570470, 31870456), the Fundamental Research Funds for the Central Universities (2412018ZD010), and the Program of Introducing Talents of Discipline to Universities (B16011). H.C. acknowledges support from Chinese Scholarship Council (CSC).</p>


2014 ◽  
Vol 11 (18) ◽  
pp. 4941-4951 ◽  
Author(s):  
W. Zhang ◽  
X. Zhu ◽  
Y. Luo ◽  
R. Rafique ◽  
H. Chen ◽  
...  

Abstract. Leguminous tree plantations at phosphorus (P) limited sites may result in excess nitrogen (N) and higher rates of nitrous oxide (N2O) emissions. However, the effects of N and P applications on soil N2O emissions from plantations with N-fixing vs. non-N-fixing tree species have rarely been studied in the field. We conducted an experimental manipulation of N and/or P additions in two plantations with Acacia auriculiformis (AA, N-fixing) and Eucalyptus urophylla (EU, non-N-fixing) in South China. The objective was to determine the effects of N or P addition alone, as well as NP application together on soil N2O emissions from these tropical plantations. We found that the average N2O emission from control was greater in the AA (2.3 ± 0.1 kg N2O–N ha−1 yr−1) than in EU plantation (1.9 ± 0.1 kg N2O–N ha−1 yr−1). For the AA plantation, N addition stimulated N2O emission from the soil while P addition did not. Applications of N with P together significantly decreased N2O emission compared to N addition alone, especially in the high-level treatments (decreased by 18%). In the EU plantation, N2O emissions significantly decreased in P-addition plots compared with the controls; however, N and NP additions did not. The different response of N2O emission to N or P addition was attributed to the higher initial soil N status in the AA than that of EU plantation, due to symbiotic N fixation in the former. Our result suggests that atmospheric N deposition potentially stimulates N2O emissions from leguminous tree plantations in the tropics, whereas P fertilization has the potential to mitigate N-deposition-induced N2O emissions from such plantations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yiyong Li ◽  
Zhaocheng Wang ◽  
Huihui Liu ◽  
Cheng Zhang ◽  
Songling Fu ◽  
...  

Nitrogen (N) deposition and drought are two major stressors that influence tree growth and propagation. However, few studies have investigated their interactions. In this study, saplings of the two co-occurring species Ormosia pinnata (leguminous) and Schima superba (non-leguminous) were cultivated under two N addition rates (0 and 80 kg N ha–1 year–1) with well-watered (WW, 80% of field capacity), moderate drought (MD, 60% of field capacity), and severe drought conditions (SD, 40% of field capacity). We examined their growth, as well as multiple anatomical and non-structural carbohydrate (NSC) responses, after 2 years. Results revealed that N addition significantly promoted the growth of MD-stressed S. superba, whereas no significant effect was detected in O. pinnata. Decreased leaf water potential (both Ψmd and Ψpd) was also observed with N addition for both species under MD, but not under SD. Furthermore, the application of N positively impacted drought adaptive responses in the stem xylem of S. superba, showing decreased stem xylem vessel diameter (DH), theoretical hydraulic conductivity (Kth), and increased vessel frequency (VF) upon drought under N addition; such impacts were not observed in O. pinnata. Regarding leaf anatomy, N addition also caused drought-stressed S. superba to generate leaves with a lower density of veins (VD) and stomata (SD), which potentially contributed to an enhanced acclimation to drought. However, the same factors led to a decrease in the palisade mesophyll thickness (PMT) of SD-stressed O. pinnata. Moreover, N addition increased the xylem soluble sugar and starch of MD-stressed O. pinnata, and decreased the xylem soluble sugar under SD for both species. The results suggest that N addition does not consistently modify tree growth and anatomical traits under variable water availability. S. superba appeared to have a greater capacity to be more adaptable under the future interactive effects of N addition and drought due to major modifications in its anatomical traits.


2018 ◽  
Author(s):  
Liming Yan ◽  
Xiaoni Xu ◽  
Jianyang Xia

Abstract. Terrestrial plant growth and ecosystem productivity are strongly limited by availability of nitrogen (N). Atmospheric deposition of wet N as nitrate and ammonium has been rapidly increased since the industrial revolution, associated with a high spatial variation of changes in the ammonium- to nitrate-N ratio (i.e., NH4+-N / NO3−-N). However, whether and how terrestrial plants respond differently to NH4+-N and NO3−-N addition have never been quantitatively synthesized. Here, we first did a literature survey and analysis on the model projections of future changes in NH4+-N / NO3−-N in atmospheric N deposition. Most models predicted an increase in the global average of NH4+-N / NO3−-N ratio, but decreasing trends in western Europe and eastern China. Then, a meta-analysis was applied to compare the different growth responses of 402 plant species to NH4+-N and NO3−-N addition from 217 N fertilization studies. In general, a greater response of plant growth to NH4+-N (+6.3 % g−1 N) than NO3−-N (+1.0 % g−1 N) addition was detected across all species. The larger sensitivity of plant growth to NH4+- than NO3−-N was found in all plant functional types except for grasses. In addition, the NO3−-N addition promoted terrestrial plants to allocate more biomass to above-ground, whereas NH4+-N addition significantly enhanced below- but not above-ground growth. These results imply that the global accelerating N deposition could stimulate plant growth more in regions with increasing (e.g., North America) than decreasing (e.g., eastern China) NH4+-N / NO3−-N ratio. The findings suggest future assessments and predictions on the vegetation response to atmospheric N enrichment could benefit from a better understanding of plant strategies for acquiring different forms of N.


Sign in / Sign up

Export Citation Format

Share Document