scholarly journals Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform

2010 ◽  
Vol 7 (4) ◽  
pp. 1271-1278 ◽  
Author(s):  
J. Hong ◽  
J. Kim ◽  
H. Ishikawa ◽  
Y. Ma

Abstract. Turbulence statistics such as flux-variance relationship are critical information in measuring and modeling ecosystem exchanges of carbon, water, energy, and momentum at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT), this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environments such as nocturnal stable boundary layer.

2009 ◽  
Vol 6 (5) ◽  
pp. 9677-9699 ◽  
Author(s):  
J. Hong ◽  
J. Kim ◽  
H. Ishikawa ◽  
Y. Ma

Abstract. Turbulence statistics such as flux-variance relationship is critical information in measuring and modeling carbon, water, energy, and momentum exchanges at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT), this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding of the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environment such as nocturnal stable boundary layer.


2012 ◽  
Vol 51 (6) ◽  
pp. 1010-1025 ◽  
Author(s):  
Bianca Adler ◽  
C. David Whiteman ◽  
Sebastian W. Hoch ◽  
Manuela Lehner ◽  
Norbert Kalthoff

AbstractEpisodic nighttime intrusions of warm air, accompanied by strong winds, enter the enclosed near-circular Meteor Crater basin on clear, synoptically undisturbed nights. Data analysis is used to document these events and to determine their spatial and temporal characteristics, their effects on the atmospheric structure inside the crater, and their relationship to larger-scale flows and atmospheric stability. A conceptual model that is based on hydraulic flow theory is offered to explain warm-air-intrusion events at the crater. The intermittent warm-air-intrusion events were closely related to a stable surface layer and a mesoscale (~50 km) drainage flow on the inclined plain outside the crater and to a continuous shallow cold-air inflow that came over the upstream crater rim. Depending on the upstream conditions, the cold-air inflow at the crater rim deepened temporarily and warmer air from above the stable surface layer on the surrounding plain descended into the crater, as part of the flowing layer. The flow descended up to 140 m into the 170-m-deep crater and did not penetrate the approximately 30-m-deep crater-floor inversion. The intruding air, which was up to 5 K warmer than the crater atmosphere, did not extend into the center of the crater, where the nighttime near-isothermal layer in the ambient crater atmosphere remained largely undisturbed. New investigations are suggested to test the hypothesis that the warm-air intrusions are associated with hydraulic jumps.


2015 ◽  
Vol 72 (6) ◽  
pp. 2394-2410 ◽  
Author(s):  
Dan Li ◽  
Gabriel G. Katul ◽  
Sergej S. Zilitinkevich

Abstract Cospectral budgets are used to link the kinetic and potential energy distributions of turbulent eddies, as measured by their spectra, to macroscopic relations between the turbulent Prandtl number (Prt) and atmospheric stability measures such as the stability parameter ζ, the gradient Richardson number Rg, or the flux Richardson number Rf in the atmospheric surface layer. The dependence of Prt on ζ, Rg, or Rf is shown to be primarily controlled by the ratio of Kolmogorov and Kolmogorov–Obukhov–Corrsin phenomenological constants and a constant associated with isotropization of turbulent flux production that can be independently determined using rapid distortion theory in homogeneous turbulence. Changes in scaling laws of the vertical velocity and air temperature spectra are also shown to affect the Prt–ζ (or Prt–Rg or Prt–Rf) relation. Results suggest that departure of Prt from unity under neutral conditions is induced by dissimilarity between momentum and heat in terms of Rotta constants, isotropization constants, and constants in the flux transfer terms. A maximum flux Richardson number Rfm predicted from the cospectral budgets method (=0.25) is in good agreement with values in the literature, suggesting that Rfm may be tied to the collapse of Kolmogorov spectra instead of laminarization of turbulent flows under stable stratification. The linkages between microscale energy distributions of turbulent eddies and macroscopic relations that are principally determined by dimensional considerations or similarity theories suggest that when these scalewise energy distributions of eddies experience a “transition” to other distributions (e.g., when Rf is increased over Rfm), dimensional considerations or similarity theories may fail to predict bulk flow properties.


2012 ◽  
Vol 29 (5) ◽  
pp. 697-710 ◽  
Author(s):  
Christine L. Haman ◽  
Barry Lefer ◽  
Gary A. Morris

Abstract Boundary layer height is estimated during a 21-month period in Houston, Texas, using continuous ceilometer observations and the minimum-gradient method. A comparison with over 60 radiosondes indicates overall agreement between ceilometer- and radiosonde-estimated PBL and residual layer heights. Additionally, the ceilometer-estimated PBL heights agree well with 31 vertical profiles of ozone. Difficulty detecting the PBL height occurs immediately following a frontal system with precipitation, during periods with high wind speeds, and in the early evening when convection is weakening, a new stable surface layer is forming, and the lofted aerosols detected by the lidar do not represent the PBL. Long-term diurnal observations of the PBL height indicate nocturnal PBL heights range from approximately 100 to 300 m throughout the year, while the convective PBL displays more seasonal and daily variability typically ranging from 1100 m in the winter to 2000 m in the summer.


1999 ◽  
Vol 386 ◽  
pp. 167-212 ◽  
Author(s):  
LIAN SHEN ◽  
XIANG ZHANG ◽  
DICK K. P. YUE ◽  
GEORGE S. TRIANTAFYLLOU

Direct numerical simulation (DNS) is used to examine low Froude number free-surface turbulence (FST) over a two-dimensional mean shear flow. The Navier–Stokes equations are solved using a finite-difference scheme with a grid resolution of 1283. Twenty separate simulations are conducted to calculate the statistics of the flow. Based on the velocity deficit and the vertical extent of the shear of the mean flow, the Reynolds number is 1000 and the Froude number is 0.7. We identify conceptually and numerically the surface layer, which is a thin region adjacent to the free surface characterized by fast variations of the horizontal vorticity components. This surface layer is caused by the dynamic zero-stress boundary conditions at the free surface and lies inside a thicker blockage (or ‘source’) layer, which is due to the kinematic boundary condition at the free surface. The importance of the outer blockage layer is manifested mainly in the redistribution of the turbulence intensity, i.e. in the increase of the horizontal velocity fluctuations at the expense of the vertical velocity fluctuation. A prominent feature of FST is vortex connections to the free surface which occur inside the surface layer. It is found that as hairpin-shaped vortex structures approach the free surface, their ‘head’ part is dissipated quickly in the surface layer, while the two ‘legs’ connect almost perpendicularly to the free surface. Analysis of the evolution of surface-normal vorticity based on vortex surface-inclination angle shows that both dissipation and stretching decrease dramatically after connection. As a result, vortex structures connected to the free surface are persistent and decay slowly relative to non-connected vorticities. The effects of surface and blockage layers on the turbulence statistics of length scales, Reynolds-stress balance, and enstrophy dynamics are examined, which elucidate clearly the different turbulence mechanisms operating in the respective near-surface scales. Finally we investigate the effect of non-zero Froude number on the turbulence statistics. We show that the most significant effect of the presence of the free surface is a considerable reduction of the pressure–strain correlation at this surface, compared to that at a free-slip at plate. This reduction is finite even for very low values of the Froude number.


Author(s):  
Christian Eichler ◽  
Thomas Sattelmayer

Premixed combustion of hydrogen-rich mixtures involves the risk of flame flashback through wall boundary layers. For laminar flow conditions, the flashback mechanism is well understood and is usually correlated by a critical velocity gradient at the wall. Turbulent transport inside the boundary layer considerably increases the flashback propensity. Only tube burner setups have been investigated in the past and thus turbulent flashback limits were only derived for a fully-developed Blasius wall friction profile. For turbulent flows, details of the flame propagation in proximity to the wall remain unclear. This paper presents results from a new experimental combustion rig, apt for detailed optical investigations of flame flashbacks in a turbulent wall boundary layer developing on a flat plate and being subject to an adjustable pressure gradient. Turbulent flashback limits are derived from the observed flame position inside the measurement section. The fuels investigated cover mixtures of methane, hydrogen and air at various mixing ratios. The associated wall friction distributions are determined by RANS computations of the flow inside the measurement section with fully resolved boundary layers. Consequently, the interaction between flame back pressure and incoming flow is not taken into account explicitly, in accordance with the evaluation procedure used for tube burner experiments. The results are compared to literature values and the critical gradient concept is reviewed in light of the new data.


2001 ◽  
Vol 448 ◽  
pp. 367-385 ◽  
Author(s):  
T. B. NICKELS ◽  
IVAN MARUSIC

This paper examines and compares spectral measurements from a turbulent round jet and a turbulent boundary layer. The conjecture that is examined is that both flows consist of coherent structures immersed in a background of isotropic turbulence. In the case of the jet, a single size of coherent structure is considered, whereas in the boundary layer there are a range of sizes of geometrically similar structures. The conjecture is examined by comparing experimental measurements of spectra for the two flows with the spectra calculated using models based on simple vortex structures. The universality of the small scales is considered by comparing high-wavenumber experimental spectra. It is shown that these simple structural models give a good account of the turbulent flows.


2006 ◽  
Vol 2 (S237) ◽  
pp. 172-176
Author(s):  
Andrew J Cunningham ◽  
Adam Frank ◽  
Eric G Blackman ◽  
Alice Quillen

AbstractThe ubiquity and high density of outflows from young stars in clusters make them an intriguing candidate for the source of turbulence energy in molecular clouds. In this contribution we discuss new studies, both observational and theoretical, which address the issue of jet/outflow interactions and their ability to drive turbulent flows in molecular clouds. Our results are surprising in that they show that fossil cavities, rather than bow shocks from active outflows, constitute the mechanism of re-energizing turbulence. We first present simulations which show that collisions between active jets are ineffective at converting directed momentum and energy in outflows into turbulence. This effect comes from the ability of radiative cooling to constrain the surface area through which colliding outflows entrain ambient gas. We next discuss observational results which demonstrate that fossil cavities from “extinct” outflows are abundant in molecular material surrounding clusters such as NGC 1333. These structures, rather than the bow shocks of active outflows, comprise the missing link between outflow energy input and re-energizing turbulence. In a separate theoretical/simulation study we confirm that the evolution of cavities from decaying outflow sources leads to structures which match the observations of fossil cavities. Finally we present new results of outflow propagation in a fully turbulent medium exploring the explicit mechanisms for the transfer of energy and momentum between the driving wind and the turbulent environment.


2002 ◽  
Vol 124 (3) ◽  
pp. 169-172 ◽  
Author(s):  
Dag Myrhaug ◽  
Olav H. Slaattelid

The paper considers the effects of sea roughness and atmospheric stability on the sea surface wind stress over waves, which are in local equilibrium with the wind, by using the logarithmic boundary layer profile including a stability function, as well as adopting some commonly used sea surface roughness formulations. The engineering relevance of the results is also discussed.


Sign in / Sign up

Export Citation Format

Share Document