scholarly journals Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry

2013 ◽  
Vol 10 (1) ◽  
pp. 1207-1227 ◽  
Author(s):  
M. Roland ◽  
P. Serrano-Ortiz ◽  
A. S. Kowalski ◽  
Y. Goddéris ◽  
E. P. Sánchez-Cañete ◽  
...  

Abstract. CO2 exchange between terrestrial ecosystems and the atmosphere is key to understanding the feedbacks between climate change and the land surface. In regions with carbonaceous parent material, CO2 exchange patterns occur that cannot be explained by biological processes, such as disproportionate outgassing during daytime or nighttime CO2 uptake during periods when all vegetation is senescent. Neither of these phenomena can be attributed to carbonate weathering reactions, since their CO2 exchange rates are too small. Soil ventilation induced by high atmospheric turbulence is found to explain atypical CO2 exchange between carbonaceous systems and the atmosphere. However, by strongly altering subsurface CO2 concentrations, ventilation can be expected to influence carbonate weathering rates. By imposing ventilation-driven CO2 outgassing in a carbonate weathering model, we show here that carbonate geochemistry is accelerated and does play a surprisingly large role in the observed CO2 exchange patterns. We found that by rapidly depleting soil CO2 during daytime, ventilation disturbs soil carbonate equilibria and therefore strongly magnifies daytime carbonate precipitation and associated CO2 production. At night, ventilation ceases and the depleted CO2 concentrations increase steadily. Dissolution of carbonate is now enhanced, which consumes CO2 and largely compensates for the enhanced daytime carbonate precipitation. This is why only a relatively small effect on global carbonate weathering rates is to be expected. On the short term, however, ventilation has a drastic effect on synoptic carbonate weathering rates, resulting in a pronounced diel pattern that exacerbates the non-biological behavior of soil-atmosphere CO2 exchanges in dry regions with carbonate soils.

2013 ◽  
Vol 10 (7) ◽  
pp. 5009-5017 ◽  
Author(s):  
M. Roland ◽  
P. Serrano-Ortiz ◽  
A. S. Kowalski ◽  
Y. Goddéris ◽  
E. P. Sánchez-Cañete ◽  
...  

Abstract. CO2 exchange between terrestrial ecosystems and the atmosphere is key to understanding the feedbacks between climate change and the land surface. In regions with carbonaceous parent material, CO2 exchange patterns occur that cannot be explained by biological processes, such as disproportionate outgassing during the daytime or nighttime CO2 uptake during periods when all vegetation is senescent. Neither of these phenomena can be attributed to carbonate weathering reactions, since their CO2 exchange rates are too small. Soil ventilation induced by high atmospheric turbulence is found to explain atypical CO2 exchange between carbonaceous systems and the atmosphere. However, by strongly altering subsurface CO2 concentrations, ventilation can be expected to influence carbonate weathering rates. By imposing ventilation-driven CO2 outgassing in a carbonate weathering model, we show here that carbonate geochemistry is accelerated and does play a surprisingly large role in the observed CO2 exchange pattern of a semi-arid ecosystem. We found that by rapidly depleting soil CO2 during the daytime, ventilation disturbs soil carbonate equilibria and therefore strongly magnifies daytime carbonate precipitation and associated CO2 production. At night, ventilation ceases and the depleted CO2 concentrations increase steadily. Dissolution of carbonate is now enhanced, which consumes CO2 and largely compensates for the enhanced daytime carbonate precipitation. This is why only a relatively small effect on global carbonate weathering rates is to be expected. On the short term, however, ventilation has a drastic effect on synoptic carbonate weathering rates, resulting in a pronounced diel pattern that exacerbates the non-biological behavior of soil–atmosphere CO2 exchanges in dry regions \\mbox{with carbonate soils}.


2020 ◽  
Vol 20 (9) ◽  
pp. 5293-5308
Author(s):  
Shigeyuki Ishidoya ◽  
Hirofumi Sugawara ◽  
Yukio Terao ◽  
Naoki Kaneyasu ◽  
Nobuyuki Aoki ◽  
...  

Abstract. In order to examine O2 consumption and CO2 emission in a megacity, continuous observations of atmospheric O2 and CO2 concentrations, along with CO2 flux, have been carried out simultaneously since March 2016 at the Yoyogi (YYG) site located in the middle of Tokyo, Japan. An average O2 : CO2 exchange ratio for net turbulent O2 and CO2 fluxes (ORF) between the urban area and the overlaying atmosphere was obtained based on an aerodynamic method using the observed O2 and CO2 concentrations. The yearly mean ORF was found to be 1.62, falling within the range of the average OR values of liquid and gas fuels, and the annual average daily mean O2 flux at YYG was estimated to be −16.3 µmol m−2 s−1 based on the ORF and CO2 flux. By using the observed ORF and CO2 flux, along with the inventory-based CO2 emission from human respiration, we estimated the average diurnal cycles of CO2 fluxes from gas and liquid fuel consumption separately for each season. Both the estimated and inventory-based CO2 fluxes from gas fuel consumption showed average diurnal cycles with two peaks, one in the morning and another one in the evening; however, the evening peak of the inventory-based gas consumption was much larger than that estimated from the CO2 flux. This can explain the discrepancy between the observed and inventory-based total CO2 fluxes at YYG. Therefore, simultaneous observations of ORF and CO2 flux are useful in validating CO2 emission inventories from statistical data.


2014 ◽  
Vol 11 (3) ◽  
pp. 735-747 ◽  
Author(s):  
T. L. Smallman ◽  
M. Williams ◽  
J. B. Moncrieff

Abstract. The coupled numerical weather model WRF-SPA (Weather Research and Forecasting model and Soil-Plant-Atmosphere model) has been used to investigate a 3 yr time series of observed atmospheric CO2 concentrations from a tall tower in Scotland, UK. Ecosystem-specific tracers of net CO2 uptake and net CO2 release were used to investigate the contributions to the tower signal of key land covers within its footprint, and how contributions varied at seasonal and interannual timescales. In addition, WRF-SPA simulated atmospheric CO2 concentrations were compared with two coarse global inversion models, CarbonTrackerEurope and the National Oceanic and Atmospheric Administration's CarbonTracker (CTE-CT). WRF-SPA realistically modelled both seasonal (except post harvest) and daily cycles seen in observed atmospheric CO2 at the tall tower (R2 = 0.67, rmse = 3.5 ppm, bias = 0.58 ppm). Atmospheric CO2 concentrations from the tall tower were well simulated by CTE-CT, but the inverse model showed a poorer representation of diurnal variation and simulated a larger bias from observations (up to 1.9 ppm) at seasonal timescales, compared to the forward modelling of WRF-SPA. However, we have highlighted a consistent post-harvest increase in the seasonal bias between WRF-SPA and observations. Ecosystem-specific tracers of CO2 exchange indicate that the increased bias is potentially due to the representation of agricultural processes within SPA and/or biases in land cover maps. The ecosystem-specific tracers also indicate that the majority of seasonal variation in CO2 uptake for Scotland's dominant ecosystems (forests, cropland and managed grassland) is detectable in observations within the footprint of the tall tower; however, the amount of variation explained varies between years. The between years variation in detectability of Scotland's ecosystems is potentially due to seasonal and interannual variation in the simulated prevailing wind direction. This result highlights the importance of accurately representing atmospheric transport used within atmospheric inversion models used to estimate terrestrial source/sink distribution and magnitude.


2000 ◽  
Vol 14 ◽  
pp. 57-63 ◽  
Author(s):  
BOM Dirks ◽  
A Hensen ◽  
J Goudriaan

2008 ◽  
Vol 72 (1) ◽  
pp. 301-304 ◽  
Author(s):  
S. Arens ◽  
A. Kleidon

AbstractThe sensitivity of the global river-borne flux of Ca2+ to atmospheric pCO2 was obtained from model simulations under the assumption of saturation of CaCO3. The response was subdivided into contributions from changes in runoff, temperature and partial CO2 pressure and these were then used to parameterize the different direct and indirect effects of a changing climate on carbonate weathering and equilibria. The parameterizations are comparable/compatible to those of Walker et al. (1981) for silicate weathering, but are taken directly from models demonstrating the potential of this approach in weathering studies.


Flora ◽  
1993 ◽  
Vol 188 ◽  
pp. 125-143 ◽  
Author(s):  
Sabine C. Hahn ◽  
John D. Tenhunen ◽  
Peter W. Popp ◽  
Angelika Meyer ◽  
Otto L. Lange

2020 ◽  
Author(s):  
Hang Wen ◽  
Pamela L. Sullivan ◽  
Gwendolyn L. Macpherson ◽  
Sharon A. Billings ◽  
Li Li

Abstract. Carbonate weathering is essential in regulating atmospheric CO2 and carbon cycle at the century time scale. Plant roots have been known to accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics (e.g., depth and density distribution) modify flow paths and weathering. We address this knowledge gap using field data from and reactive transport numerical experiments at the Konza Prairie Biological Station (Konza), Kansas (USA), a site where woody encroachment into grasslands is surmised to deepen roots. Results indicate that deepening roots potentially enhance weathering in two ways. First, deepening roots can control thermodynamic limits of carbonate dissolution by regulating how much CO2 transports downward to the deeper carbonate-rich zone. The base-case data and model from Konza reveal that concentrations of Ca and Dissolved Inorganic Carbon (DIC) are regulated by soil pCO2 driven by the seasonal fluctuation of soil respiration. This relationship can be encapsulated in equations derived in this work describing the dependence of Ca and DIC on temperature and soil CO2, which has been shown to apply in multiple carbonate-dominated catchments. Second, numerical experiments show that roots control weathering rates by regulating the amount of water fluxes that flush through the carbonate zone and export reaction products at dissolution equilibrium. Numerical experiments explored the potential effects of partitioning 40 % of infiltrated water to depth in woodlands compared to 5 % in grasslands. Soil CO2 data from wood- and grasslands suggest relatively similar soil CO2 distribution over depth, and only led to 1 % to 12 % difference in weathering rates if flow partitioning was kept the same between the two land covers. In contrast, deepening roots can enhance weathering by 17 % to 207 % as infiltration rates increased from 3.7 × 10−2 to 3.7 m/yr. Numerical experiments also indicated that weathering fronts in woodlands propagated > 2 times deeper compared to grasslands after 300 years at the infiltration rate of 0.37 m/yr. These differences in weathering fronts are ultimately caused by the contact time of CO2-charged water with carbonate rocks. We recognize that modeling results are subject to limitations in representing processes and parameters, but we propose that the data and numerical experiments allude to the hypothesis that (1) deepening roots can enhance carbonate weathering; (2) the hydrological impacts of rooting characteristics can be more influential than those of soil CO2 distribution in modulating weathering rates. We call for co-located characterizations of roots, subsurface structure, soil CO2 levels, and their linkage to water and water chemistry. These measurements will be essential to improve models and illuminate feedback mechanisms of land cover changes, chemical weathering, global carbon cycle, and climate.


2006 ◽  
Vol 25 (S1) ◽  
pp. 2-2
Author(s):  
Jérôme Gaillardet ◽  
Damien Calmels ◽  
Louis François

1995 ◽  
Vol 44 (3) ◽  
pp. 253-260 ◽  
Author(s):  
George T. Byrd ◽  
T. Loboda ◽  
Clanton C. Black ◽  
R. Harold Brown

Sign in / Sign up

Export Citation Format

Share Document