scholarly journals Soil organic matter dynamics under different land-use in grasslands in Inner Mongolia (northern China)

2014 ◽  
Vol 11 (4) ◽  
pp. 5613-5637
Author(s):  
L. Zhao ◽  
W. Wu ◽  
X. Xu ◽  
Y. Xu

Abstract. We examined bulk soil properties and molecular biomarker distributions in surface soils from Inner Mongolia grasslands in order to understand the responses of soil organic matter to different land-use. The total of sixteen soils were collected from severely degraded grassland by overgrazing (DG), native grassland without apparent anthropogenic disturbance (NG), groundwater-sustaining grassland (GG) and restored grassland from previous potato cropland (RG). Compared to NG, soil organic carbon content was lower by 50% in DG, but higher by six-fold in GG and one-fold in RG. The δ13C values of soil organic carbon were −24.2 ± 0.6‰ in DG, −24.9 ± 0.6‰ in NG, −25.1 ± 0.1‰ in RG and −26.2 ± 0.6‰ in GG, reflecting different degradation degrees of soil organic matter or different water use efficiencies. The soils in DG contained the lowest abundance of aliphatic lipids (n-alkanes, n-alkanols, n-alkanoic acids, ω-hydroxylalkanoic acids and α-hydroxylalkanoic acids) and lignin-phenols, suggesting selective removal of these biochemically recalcitrant biomarkers with grassland degradation by microbial respiration or wind erosion. Compared to NG, the soils in GG and RG increased ω-hydroxylalkanoic acids by 60–70%, a biomarker for suberin from roots, and increased α-hydroxylalkanoic acids by 10–20%, a biomarker for both cutin and suberin. Our results demonstrate that the groundwater supply and cultivation-restoration practices in Inner Mongolia grasslands not only enhance soil organic carbon sequestration, but also change the proportions of shoot vs. root-derived carbon in soils. This finding has important implications for global carbon cycle since root derived aliphatic carbon has a longer residence time than the aboveground tissue-derived carbon in soils.

2014 ◽  
Vol 11 (18) ◽  
pp. 5103-5113 ◽  
Author(s):  
L. Zhao ◽  
W. Wu ◽  
X. Xu ◽  
Y. Xu

Abstract. We examined bulk soil properties and molecular biomarker distributions in surface soils from Inner Mongolian grasslands in order to understand the responses of soil organic matter to different land use. A total of 16 soils were collected from severely degraded grassland by overgrazing (DG), native grassland without apparent anthropogenic disturbance (NG), groundwater-sustaining grassland (GG) and restored grassland from previous potato cropland (RG). Compared to NG, soil organic carbon content was lower by 50% in DG, but higher by six-fold in GG and one-fold in RG. The δ13C values of soil organic carbon were –24.2 ± 0.6‰ in DG, –24.9 ± 0.6‰ in NG, –25.1 ± 0.1‰ in RG and –26.2 ± 0.6‰ in GG, reflecting different degradation degrees of soil organic matter or different water use efficiencies. The soils in DG contained the lowest abundance of aliphatic lipids (n-alkanes, n-alkanols, n-alkanoic acids, ω-hydroxylalkanoic acids and α-hydroxyalkanoic acids) and lignin-phenols, suggesting selective removal of these biochemically recalcitrant biomarkers with grassland degradation by microbial respiration or wind erosion. Compared to NG, the soils in GG and RG increased ω-hydroxylalkanoic acids by 60–70%, a biomarker for suberin from roots, and increased α-hydroxylalkanoic acids by 10–20%, a biomarker for both cutin and suberin. Our results demonstrate that the groundwater supply and cultivation–restoration practices in Inner Mongolian grasslands not only enhance soil organic carbon sequestration, but also change the proportions of shoot- versus root-derived carbon in soils. This finding has important implications for the global carbon cycle since root-derived aliphatic carbon has a longer residence time than the aboveground tissue-derived carbon in soils.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Lanlan Zhang ◽  
Zhen Li ◽  
Shiwen Zhang ◽  
Shasha Xia ◽  
Hongguang Zou ◽  
...  

Soil organic matter (SOM), as a kind of natural polymers, affects the migration and transport of ions and particles in soil system due to its surface characteristics and interaction and then causes significant changes in soil quality such as soil fertility loss and pollutant transfer. It is of great importance to study the temporal and spatial evolution of soil organic matter and its driving mechanism for soil health management. This study aims to fully reveal the evolution characteristics and driving mechanism of soil organic carbon (SOC) in farmland of the Beijing plain based on a six-year site monitoring. According to the research results, there is a significant difference in the overall soil organic content during the 6-year period. The temporal stability of SOC is moderate, and it is inversely proportional to SOC content in terms of spatial distribution. SOC content increases as organic fertilizer input rises, and an extra unit (15 kg·ha−1) of organic fertilizer input leads to an increase of 0.057 g·kg−1 in SOC content. The soil with higher clay content exhibits higher SOC content. The organic carbon content in different soil texture types increases with time, and there is a significant difference between the increases in medium loam and light loam. The grain field plantation system exhibited declining SOC content, while the protected vegetable fields, open vegetable fields, and orchards all showed an increase in SOC content. According to our results, the SOC content of farmland in the plain areas of Beijing is largely dependent on the input of organic carbon if other conditions remain unchanged or exhibit insignificant changes.


2019 ◽  
Vol 31 (2) ◽  
Author(s):  
Olorunwa Eric Omofunmi ◽  
Best Ayoyimika Omotayo

The present study attempts to relate the soil organic carbon content with four different land uses (Faculty of Agriculture Teaching and Research farm, cashew plantation and Agricultural and Bioresources experimental farm and oil palm plantation) which come under South west, Nigeria. The objective of the study was to assess the effects of different land uses on soil organic carbon. The sampled soils were collected from different land uses at 0–15 cm (surface), 15 – 30 cm and 30 - 45 cm (sub-surface) depth and were analyzed for soil physical properties with standard procedures. Data were analysed using descriptive statistics and analysis of variance (ANOVA). The results indicated that the oil palm plantation land use recorded the highest mean of soil organic carbon content compared with other land use types at 0 – 15 cm soil depth (23 ±4 g kg-1), which was 1.5, 2.6 and 53.3 % more than in the Faculty of Agriculture Teaching and Research farm land, the cashew plantation land and the Agricultural and Bioresources experimental farm land. This is attributed to more inputs of litter fall and reduced decomposition of organic matter. Similarly, the lowest soil organic carbon content under Agricultural and Bioresorces engineering as compared to others was attributed to reduce of organic matter and frequent tillage which encouraged oxidation of organic matter. The finding indicated that the means of soil organic carbon were significantly different (P < 0.05) between the land use types. Conservation farming should be practiced


2021 ◽  
Vol 13 (15) ◽  
pp. 8332
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Topography-induced microclimate differences determine the local spatial variation of soil characteristics as topographic factors may play the most essential role in changing the climatic pattern. The aim of this study was to investigate the spatial distribution of soil organic carbon (SOC) with respect to the slope gradient and aspect, and to quantify their influence on SOC within different land use/cover classes. The study area is the Region of Niš in Serbia, which is characterized by complex topography with large variability in the spatial distribution of SOC. Soil samples at 0–30 cm and 30–60 cm were collected from different slope gradients and aspects in each of the three land use/cover classes. The results showed that the slope aspect significantly influenced the spatial distribution of SOC in the forest and vineyard soils, where N- and NW-facing soils had the highest level of organic carbon in the topsoil. There were no similar patterns in the uncultivated land. No significant differences were found in the subsoil. Organic carbon content was higher in the topsoil, regardless of the slope of the terrain. The mean SOC content in forest land decreased with increasing slope, but the difference was not statistically significant. In vineyards and uncultivated land, the SOC content was not predominantly determined by the slope gradient. No significant variations across slope gradients were found for all observed soil properties, except for available phosphorus and potassium. A positive correlation was observed between SOC and total nitrogen, clay, silt, and available phosphorus and potassium, while a negative correlation with coarse sand was detected. The slope aspect in relation to different land use/cover classes could provide an important reference for land management strategies in light of sustainable development.


2019 ◽  
Vol 37 (3) ◽  
pp. 263-273
Author(s):  
Efraín Francisco Visconti-Moreno ◽  
Ibonne Geaneth Valenzuela-Balcázar

The stability of soil aggregates depends on the organic matter, and the soil use and management can affect the soil organicmatter (SOM) content. Therefore, it is necessary to know therelationship between aggregate stability and the content of SOMin different types of soil use at two different altitudes of theColombian Andes. This study examined the conditions of soilaggregate stability expressed as a distribution of the size classes of stable aggregates (SA) and of the mean weighted diameter of the stable aggregates (MWD). To correlate these characteristics with the soil organic carbon (OC), we measured the particulate organic matter pool (POC), the OC associated with the mineral organic matter pool (HOC), the total organic carbon content (TOC), and the humification rate (HR). Soils were sampled at two altitudes: 1) Humic Dystrudepts in a cold tropical climate (CC) with three plots: tropical mountain rainforest, pastures, and crops; 2) Fluvaquentic Dystrudepts in a warm tropical climate (WC) with three plots: tropical rainforest, an association of oil palm and pastures, and irrigated rice. Soils were sampled at three depths: 0-5, 5-10 and 10-20 cm. The physical properties, mineral particle size distribution, and bulk density were measured. The content of SA with size>2.36 mm was higher in the CC soil (51.48%) than in the WC soil (9.23%). The SA with size 1.18-2.36 mm was also higher in the CC soil (7.78%) than in the WC soil (0.62%). The SA with size 0.60-1.18 mm resulted indifferent. The SA with size between 0.30 and 0.60 mm were higher in the WC soil (13.95%) than in the CC soil (4.67%). The SA<0.30 mm was higher in the WC soil (72.56%) than in the CC soil (32.15%). It was observed that MWD and the SA>2.36 mm increased linearly with a higher POC, but decreased linearly with a higher HR. For the SA<0.30 mm, a linear decrease was observed at a higher POC, while it increased at a higher HR.


2020 ◽  
Author(s):  
Dedy Antony ◽  
Jo Clark ◽  
Chris Collins ◽  
Tom Sizmur

&lt;p&gt;Soils are the largest terrestrial pool of organic carbon and it is now known that as much as 50% of soil organic carbon (SOC) can be stored below 30 cm. Therefore, knowledge of the mechanisms by which soil organic carbon is stabilised at depth and how land use affects this is important.&lt;/p&gt;&lt;p&gt;This study aimed to characterise topsoil and subsoil SOC and other soil properties under different land uses to determine the SOC stabilisation mechanisms and the degree to which SOC is vulnerable to decomposition. Samples were collected under three different land uses: arable, grassland and deciduous woodland on a silty-clay loam soil and analysed for TOC, pH, C/N ratio and texture down the first one metre of the soil profile. Soil organic matter (SOM) physical fractionation and the extent of fresh mineral surfaces were also analysed to elucidate SOM stabilisation processes.&lt;/p&gt;&lt;p&gt;Results showed that soil texture was similar among land uses and tended to become more fine down the soil profile, but pH did not significantly change with soil depth. Total C, total N and C/N ratio decreased down the soil profile and were affected by land use in the order woodland &gt; grassland &gt; arable. SOM fractionation revealed that the free particulate organic matter (fPOM) fraction was significantly greater in both the topsoil and subsoil under woodland than under grassland or arable. The mineral associated OC (MinOC) fraction was proportionally greater in the subsoil compared to topsoil under all land uses: arable &gt; grassland &gt; woodland. Clay, Fe and Mn availability play a significant role (R&lt;sup&gt;2&lt;/sup&gt;=0.87) in organic carbon storage in the top 1 m of the soil profile.&lt;/p&gt;&lt;p&gt;It is evidently clear from the findings that land use change has a significant effect on the dynamics of the SOC pool at depth, related to litter inputs to the system.&lt;/p&gt;


2014 ◽  
Vol 28 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Majid Mahmoodabadi ◽  
Elina Heydarpour

Abstract Soil organic carbon is one of the most important soil components, which acts as a sink for atmospheric CO2. This study focuses on the effect of different methods of organic matter application on the soil organic carbon sequestration in a 4-month experiment under controlled greenhouse conditions. Three rates of straw residue and farmyard manure were added to uncultivated and cropland soils. Two treatments of straw residue and farmyard manure incorporation were used into: a soil surface layer and 0-20 cm soil depth. The result showed that the application of organic matter, especially the farmyard manure incorporation led to a significant increase in the final soil organic carbon content. Higher amounts of soil organic carbon were stored in the cropland soil than in the uncultivated soil. On average, the soil surface layer treatment caused a higher sequestration of soil organic carbon compared to the whole soil depth treatment. If higher rates of organic matter were added to the soils, lower carbon sequestration was observed and vice versa. The result indicated that the carbon sequestration ranged farmyardmanure > strawresidue and cropland soil > uncultivated soil. The findings of this research revealed the necessity of paying more attention to the role of organic residue management in carbon sequestration and prevention of increasing global warming.


2005 ◽  
Vol 20 (5) ◽  
pp. 519-527 ◽  
Author(s):  
Xiaoyong Cui ◽  
Yanfen Wang ◽  
Haishan Niu ◽  
Jing Wu ◽  
Shiping Wang ◽  
...  

2021 ◽  
Author(s):  
Gerardo Ojeda ◽  
Hernando García ◽  
Susanne Woche ◽  
Jorg Bachmann ◽  
Georg Guggenberger ◽  
...  

&lt;p&gt;&lt;strong&gt;Contextualization&lt;/strong&gt;: In 2011, it was published a curious conundrum, which forms the basis of the present study: why, when organic matter is thermodynamically unstable, does it persist in soils, sometimes for thousands of years? The question challenges the idea that the recalcitrant or labile character of soil organic matter (SOM) is a sufficient argument to ensure SOM persistence. Temperature could play an important role in SOM decomposition, especially in tropics. Particularly, tropical dry forest (TDF) represents an important ecosystem with unique biodiversity and fertile soils in Colombia. At present, the increase in population density and consequently, in the demands of energy and arable land, have led to its degradation.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Knowledge gap&lt;/strong&gt;: Although the mentioned question was formulated several years ago, it has still to be answered, hence limiting the development of new soil organic carbon (SOC) models or the quantification of its ecosystem services. A key point, in terms of soil carbon storage, is to determine the maximum rate of CO&lt;sub&gt;2&lt;/sub&gt; emissions from soils (Rmax). Traditionally, it is considered that Rmax occurs at the 50% of field capacity. Unfortunately, information about the environmental conditions under which this maximum occurs is scarce.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;&amp;#160;&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Purpose&lt;/strong&gt;: The main objectives of this study were: (a) determine the maximum rate of soil respiration or CO&lt;sub&gt;2&lt;/sub&gt; emissions from soil in TDF soils and (b) to estimate the main environmental drivers of maximum SOM decomposition along a temperature gradient (20&amp;#176;, 30&amp;#176;, 40&amp;#176;C) in incubated soils.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;&amp;#160;&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methodology&lt;/strong&gt;: Soils pertained to permanent plots were sampled in six different TDF of Colombia. The evolution of CO&lt;sub&gt;2&lt;/sub&gt; emissions (monitored by an infrared gas analyser), relative humidity and soil temperature were recorded in time on incubated soils samples. Temperature was maintained constant at 20&amp;#176;C, 30&amp;#176;C and 40&amp;#176;C during soil incubations under soil drying conditions. Additionally, elemental composition (Fe, Ca, O, Al, Si, K, Mg, Na) of SOM and chemical composition of soil organic carbon (SOC: aromatic-C, O-alkyl-C, Aliphatic-C, Phenolic and Ketonic-C) were determined by X-ray photoelectron spectroscopy (XPS).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;&amp;#160;&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results and conclusions&lt;/strong&gt;: The majority of TDF soil samples (90.7%) presented that its peak of CO&lt;sub&gt;2&lt;/sub&gt; emissions occurs at soil-water contents higher than saturation (0 MPa), at 20&amp;#176;, 30&amp;#176; and 40&amp;#176;C. Clearly, to consider that the maximum soil respiration rate could be observed at the 50% of field capacity, underestimated the real maximum value of carbon mineralization (48-68%.) Globally, increases in the Rmax values corresponded to increases in electrical conductivity, soil desorption rates, total carbon and nitrogen contents, and decreases in bulk density (BD) and aggregate stability. Taking into account the temperature gradient, increments in calcium and aromatic carbon contents corresponded to decrements in Rmax values but only at 30&amp;#176;C and 40&amp;#176;C, respectively. Some authors indicated that at high soil moisture contents, iron reduction could be release protected carbon. However, no significant relation between Fe and Rmax was observed. Consequently, physical and chemical properties related to SOM accessibility and decomposability by microbial activity, were the main drivers and controls of maximum SOM decomposition rates.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document