headwater basins
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 1)

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1982
Author(s):  
Ismail Bilal Peker ◽  
Ali Arda Sorman

In recent years, the potential impacts of climate change on water resources and the hydrologic cycle have gained importance especially for snow-dominated mountainous basins. Within this scope, the Euphrates–Tigris Basin, a snow-fed transboundary river with several large dams, was selected to investigate the effects of changing climate on seasonal snow and runoff. In this study, two headwater basins of the Euphrates River, ranging in elevation between 1500–3500 m, were assigned and SWAT was employed as a hydrological modeling tool. Model calibration and validation were conducted in a stepwise manner for snow and runoff consecutively. For the snow routine, model parameters were adjusted using MODIS daily snow-covered area, achieving hit rates of more than 95% between MODIS and SWAT. Other model parameters were calibrated successively and later validated according to daily runoff, reaching a Nash–Sutcliffe efficiency of 0.64–0.82 in both basins. After the modeling stage, the focus was drawn to the impacts of climate change under two different climate scenarios (RCP4.5 and RCP8.5) in two 30-year projection periods (2041–2070 and 2071–2099). From the results, it is estimated that on average snow water equivalent decreases in the order of 30–39% and snow-covered days shorten by 37–43 days for the two basins until 2099. In terms of runoff, a slight reduction of at most 5% on average volume is projected but more notably, runoff center-time is expected to shift 1–2 weeks earlier by the end of the century.


2021 ◽  
Author(s):  
Christoph Klingler ◽  
Karsten Schulz ◽  
Mathew Herrnegger

Abstract. Very large and comprehensive datasets are increasingly used in the field of hydrology. Large-sample studies provide insights into the hydrological cycle that might not be available with small-scale studies. LamaH (Large-Sample Data for Hydrology) is a new dataset for large-sample studies and comparative hydrology in Central Europe. It covers the entire upper Danube to the state border Austria/Slovakia, as well as all other Austrian catchments including their foreign upstream areas. LamaH covers an area of 170 000 km2 in 9 different countries, ranging from lowland regions characterized by a continental climate to high alpine zones dominated by snow and ice. Consequently, a wide diversity of properties is present in the individual catchments. We represent this variability in 859 observed catchments with over 60 catchment attributes, covering topography, climatology, hydrology, land cover, vegetation, soil and geological properties. LamaH further contains a collection of runoff time series as well as meteorological time series. These time series are provided with daily and also hourly resolution. All meteorological and the majority of runoff time series cover a span of over 35 years, which enables long-term analyses, also with a high temporal resolution. The runoff time series are classified by over 20 different attributes including information about human impacts and indicators for data quality and completeness. The structure of LamaH is based on the well-known CAMELS datasets. In contrast, however, LamaH does not only consider headwater basins. Intermediate catchments are also covered, allowing, for the first time within a hydrological large sample dataset, to consider the hydrological network and river topology in applications. We discuss not only the data basis and the methodology of data preparation, but also focus on possible limitations and uncertainties. Potential applications of LamaH are also outlined, since it is intended to serve as a uniform basis for further research. LamaH is available at https://doi.org/10.5281/zenodo.4525244 (Klingler et al., 2021).


Author(s):  
Stéphane Ecrepont ◽  
Christophe Cudennec

Abstract. The sensitivity of a geomorphology-based hydrological modelling is evaluated according to four DEMs from 5 to 50 m resolution in Brittany, France. A set of 8 basins (5–565.7 km2) is used in a pseudo-ungauged context to explore the potential of Prediction in Ungauged Basin (PUB). The results show that despite slight differences on the stream networks extracted from DEMs and associated transfer functions, a coarse-worldwide DEM such as SRTM (25 m) supported similar performances than the finer French DEM (5 m) based on three validation indices. Finer DEMs may be useful only on headwater basins to gain a marginal performance.


2020 ◽  
Vol 24 (4) ◽  
pp. 2141-2165 ◽  
Author(s):  
Vincent Vionnet ◽  
Vincent Fortin ◽  
Etienne Gaborit ◽  
Guy Roy ◽  
Maria Abrahamowicz ◽  
...  

Abstract. From 19 to 22 June 2013, intense rainfall and concurrent snowmelt led to devastating floods in the Canadian Rockies, foothills and downstream areas of southern Alberta and southeastern British Columbia, Canada. Such an event is typical of late-spring floods in cold-region mountain headwater, combining intense precipitation with rapid melting of late-lying snowpack, and represents a challenge for hydrological forecasting systems. This study investigated the factors governing the ability to predict such an event. Three sources of uncertainty, other than the hydrological model processes and parameters, were considered: (i) the resolution of the atmospheric forcings, (ii) the snow and soil moisture initial conditions (ICs) and (iii) the representation of the soil texture. The Global Environmental Multiscale hydrological modeling platform (GEM-Hydro), running at a 1 km grid spacing, was used to simulate hydrometeorological conditions in the main headwater basins of southern Alberta during this event. The GEM atmospheric model and the Canadian Precipitation Analysis (CaPA) system were combined to generate atmospheric forcing at 10, 2.5 and 1 km over southern Alberta. Gridded estimates of snow water equivalent (SWE) from the Snow Data Assimilation System (SNODAS) were used to replace the model SWE at peak snow accumulation and generate alternative snow and soil moisture ICs before the event. Two global soil texture datasets were also used. Overall 12 simulations of the flooding event were carried out. Results show that the resolution of the atmospheric forcing affected primarily the flood volume and peak flow in all river basins due to a more accurate estimation of intensity and total amount of precipitation during the flooding event provided by CaPA analysis at convection-permitting scales (2.5 and 1 km). Basin-averaged snowmelt also changed with the resolution due to changes in near-surface wind and resulting turbulent fluxes contributing to snowmelt. Snow ICs were the main sources of uncertainty for half of the headwater basins. Finally, the soil texture had less impact and only affected peak flow magnitude and timing for some stations. These results highlight the need to combine atmospheric forcing at convection-permitting scales with high-quality snow ICs to provide accurate streamflow predictions during late-spring floods in cold-region mountain river basins. The predictive improvement by inclusion of high-elevation weather stations in the precipitation analysis and the need for accurate mountain snow information suggest the necessity of integrated observation and prediction systems for forecasting extreme events in mountain river basins.


2017 ◽  
Vol 53 (7) ◽  
pp. 5364-5381 ◽  
Author(s):  
P. C. Saksa ◽  
M. H. Conklin ◽  
J. J. Battles ◽  
C. L. Tague ◽  
R. C. Bales

Sign in / Sign up

Export Citation Format

Share Document